|
|
A324275
|
|
Numbers k for which A324274(k) is 0, i.e., starting squares in A324274 that yield a path of infinite length.
|
|
3
|
|
|
2, 9, 14, 27, 34, 53, 64, 89, 102, 133, 150, 187, 206, 249, 272, 321, 346, 401, 430, 491, 522, 589, 624, 697, 734, 813, 854, 939, 982, 1073, 1120, 1217, 1266, 1369, 1422, 1531, 1586, 1701, 1760, 1881, 1942, 2069, 2134, 2267, 2334, 2473
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Note that the sequence up to a(n) (for its current known values) is actually the path of a(n) in reverse until it reaches square 2. It is therefore conjectured that all starting squares in A324274 either have a finite length or are part of this single sequence.
|
|
LINKS
|
Table of n, a(n) for n=1..46.
|
|
FORMULA
|
Conjectures from Colin Barker, Mar 09 2019: (Start)
G.f.: x*(2 + 7*x + 3*x^2 + 6*x^3 - x^5 + x^6) / ((1 - x)^3*(1 + x)^2*(1 + x^2)).
a(n) = (5 + 7*(-1)^n + (2-2*i)*(-i)^n + (2+2*i)*i^n + (26+6*(-1)^n)*n + 18*n^2) / 16 where i=sqrt(-1).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7) for n>7.
(End)
|
|
CROSSREFS
|
Cf. A316588, A324273, A324274.
Sequence in context: A071344 A224855 A254608 * A106360 A024470 A024472
Adjacent sequences: A324272 A324273 A324274 * A324276 A324277 A324278
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jan Koornstra, Feb 27 2019
|
|
STATUS
|
approved
|
|
|
|