login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324272
a(n) = 2*13^(2*n).
1
2, 338, 57122, 9653618, 1631461442, 275716983698, 46596170244962, 7874752771398578, 1330833218366359682, 224910813903914786258, 38009927549761598877602, 6423677755909710210314738, 1085601540748741025543190722, 183466660386537233316799232018, 31005865605324792430539070211042
OFFSET
0,1
COMMENTS
x = A324271(n) and y = a(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(26*n+1) = 4*y^13 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).
FORMULA
O.g.f.: 2/(1 - 169*x).
E.g.f.: 2*exp(169*x).
a(n) = 169*a(n-1) for n > 0.
a(n) = 2*169^n.
a(n) = A005843(A000290(A001022(n))).
EXAMPLE
For A324271(0) = 181 and a(0) = 2, 181^2 + 7 = 32768 = 4*2^13.
MAPLE
a:=n->2*169^n: seq(a(n), n=0..20);
MATHEMATICA
2 169^Range[0, 20]
PROG
(GAP) List([0..20], n->2*169^n);
(Magma) [2*169^n: n in [0..20]];
(PARI) a(n) = 2*169^n;
CROSSREFS
Cf. A324271: 181*13^(13*n); A000290: n^2; A001022: 13^n; A005843: 2*n.
Sequence in context: A246872 A057626 A201310 * A063968 A172136 A378869
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Mar 28 2019
STATUS
approved