login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324269
a(n) = 3*11^(2*n).
1
3, 363, 43923, 5314683, 643076643, 77812273803, 9415285130163, 1139249500749723, 137849189590716483, 16679751940476694443, 2018249984797680027603, 244208248160519283339963, 29549198027422833284135523, 3575452961318162827380398283, 432629808319497702113028192243
OFFSET
0,1
COMMENTS
x = A324268(n) and y = a(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 11^(10*n+1) = 4*y^5 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).
FORMULA
O.g.f.: 3/(1 - 121*x).
E.g.f.: 3*exp(121*x).
a(n) = 121*a(n-1) for n > 0.
a(n) = 3*121^n.
a(n) = 3*A001020(n)^2.
EXAMPLE
For A324268(0) = 31 and a(0) = 3, 31^2 + 11 = 972 = 4*3^5.
MAPLE
a:=n->3*121^n: seq(a(n), n=0..20);
MATHEMATICA
3 121^Range[0, 20]
PROG
(GAP) List([0..20], n->3*121^n);
(Magma) [3*121^n: n in [0..20]];
(PARI) a(n) = 3*121^n;
CROSSREFS
Cf. A324268: 31*11^(5*n); A000290: n^2; A000584: n^5; A001020: 11^n.
Sequence in context: A324402 A324427 A304285 * A173648 A110717 A068988
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Feb 27 2019
STATUS
approved