OFFSET
0,1
COMMENTS
x = A324268(n) and y = a(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 11^(10*n+1) = 4*y^5 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).
LINKS
K. Chakraborty, A. Hoque, R. Sharma, Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, arXiv:1812.11874 [math.NT], 2018.
Index entries for linear recurrences with constant coefficients, signature (121).
FORMULA
O.g.f.: 3/(1 - 121*x).
E.g.f.: 3*exp(121*x).
a(n) = 121*a(n-1) for n > 0.
a(n) = 3*121^n.
a(n) = 3*A001020(n)^2.
EXAMPLE
For A324268(0) = 31 and a(0) = 3, 31^2 + 11 = 972 = 4*3^5.
MAPLE
a:=n->3*121^n: seq(a(n), n=0..20);
MATHEMATICA
3 121^Range[0, 20]
PROG
(GAP) List([0..20], n->3*121^n);
(Magma) [3*121^n: n in [0..20]];
(PARI) a(n) = 3*121^n;
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Feb 27 2019
STATUS
approved