OFFSET
0,1
COMMENTS
x = a(n) and y = A324272(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(26*n+1) = 4*y^13 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).
LINKS
K. Chakraborty, A. Hoque, R. Sharma, Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, arXiv:1812.11874 [math.NT], 2018.
Index entries for linear recurrences with constant coefficients, signature (302875106592253).
FORMULA
EXAMPLE
For a(0) = 181 and A324272(0) = 2, 181^2 + 7 = 32768 = 4*2^13.
MAPLE
a:=n->181*302875106592253^n: seq(a(n), n=0..20);
MATHEMATICA
181 302875106592253^Range[0, 20]
PROG
(GAP) List([0..20], n->181*302875106592253^n);
(Magma) [181*302875106592253^n: n in [0..20]];
(PARI) a(n) = 181*302875106592253^n;
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Mar 28 2019
STATUS
approved