login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324266
a(n) = 2*49^n.
3
2, 98, 4802, 235298, 11529602, 564950498, 27682574402, 1356446145698, 66465861139202, 3256827195820898, 159584532595224002, 7819642097165976098, 383162462761132828802, 18774960675295508611298, 919973073089479921953602, 45078680581384516175726498, 2208855348487841292610598402
OFFSET
0,1
COMMENTS
x = A324265(n) and y = a(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(6*n+1) = 4*y^3 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).
LINKS
K. Chakraborty, A. Hoque, R. Sharma, Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, arXiv:1812.11874 [math.NT], 2018.
FORMULA
O.g.f.: 2/(1 - 49*x).
E.g.f.: 2*exp(49*x).
a(n) = 49*a(n-1) for n > 0.
a(n) = (49/2)*(A109808(n))^2.
EXAMPLE
For A324265(0) = 5 and a(0) = 2, 5^2 + 7 = 32 = 4*2^3.
MAPLE
a:=n->2*49^n: seq(a(n), n=0..20);
MATHEMATICA
2*49^Range[0, 20]
PROG
(GAP) List([0..20], n->2*49^n);
(Magma) [2*49^n: n in [0..20]];
(PARI) a(n) = 2*49^n;
CROSSREFS
Cf. A324265 (5*343^n), A000290 (n^2), A000578 (n^3), A109808 (2*7^(n-1)).
Sequence in context: A316949 A317729 A223038 * A258399 A212838 A024241
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Feb 20 2019
STATUS
approved