login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366937
a(n) = Sum_{k=1..n} (-1)^(k-1) * binomial(k+1,2) * floor(n/k).
3
1, -1, 6, -6, 10, -7, 22, -26, 26, -16, 51, -54, 38, -41, 101, -83, 71, -72, 119, -143, 123, -66, 211, -230, 111, -151, 279, -216, 220, -182, 315, -397, 237, -207, 467, -430, 274, -279, 599, -519, 343, -423, 524, -665, 557, -250, 879, -874, 380, -612, 874, -776
OFFSET
1,3
FORMULA
G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1+x^k)^3 = -1/(1-x) * Sum_{k>=1} binomial(k+1,2) * (-x)^k/(1-x^k).
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(k-1)*binomial(k+1, 2)*(n\k));
(Python)
from math import isqrt
def A366937(n): return (((s:=isqrt(m:=n>>1))*(s+1)**2*((s<<2)+5)<<1)-(t:=isqrt(n))*(t+1)**2*(t+2)-sum((((q:=m//w)+1)*(q*((q<<2)+5)+6*w*((w<<1)+1))<<1) for w in range(1, s+1))+sum(((q:=n//w)+1)*(q*(q+2)+3*w*(w+1)) for w in range(1, t+1)))//6 # Chai Wah Wu, Oct 29 2023
CROSSREFS
Partial sums of A320900.
Sequence in context: A301690 A365786 A365783 * A096474 A220439 A363324
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 29 2023
STATUS
approved