Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 29 2023 22:06:21
%S 1,-1,6,-6,10,-7,22,-26,26,-16,51,-54,38,-41,101,-83,71,-72,119,-143,
%T 123,-66,211,-230,111,-151,279,-216,220,-182,315,-397,237,-207,467,
%U -430,274,-279,599,-519,343,-423,524,-665,557,-250,879,-874,380,-612,874,-776
%N a(n) = Sum_{k=1..n} (-1)^(k-1) * binomial(k+1,2) * floor(n/k).
%F G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1+x^k)^3 = -1/(1-x) * Sum_{k>=1} binomial(k+1,2) * (-x)^k/(1-x^k).
%o (PARI) a(n) = sum(k=1, n, (-1)^(k-1)*binomial(k+1, 2)*(n\k));
%o (Python)
%o from math import isqrt
%o def A366937(n): return (((s:=isqrt(m:=n>>1))*(s+1)**2*((s<<2)+5)<<1)-(t:=isqrt(n))*(t+1)**2*(t+2)-sum((((q:=m//w)+1)*(q*((q<<2)+5)+6*w*((w<<1)+1))<<1) for w in range(1,s+1))+sum(((q:=n//w)+1)*(q*(q+2)+3*w*(w+1)) for w in range(1,t+1)))//6 # _Chai Wah Wu_, Oct 29 2023
%Y Partial sums of A320900.
%Y Cf. A024919, A366938, A366939.
%Y Cf. A364970, A366395.
%K sign
%O 1,3
%A _Seiichi Manyama_, Oct 29 2023