

A096474


Difference prime(q+2)  prime(q) as q runs through the lessertwinprimes.


3



6, 6, 10, 8, 18, 12, 6, 14, 16, 12, 24, 18, 24, 18, 16, 14, 24, 18, 24, 18, 10, 12, 18, 40, 28, 20, 24, 18, 28, 10, 12, 12, 8, 8, 22, 16, 12, 12, 14, 14, 26, 36, 24, 30, 24, 8, 18, 30, 12, 22, 22, 16, 18, 24, 10, 14, 18, 14, 10, 20, 10, 32, 32, 12, 10, 44, 30, 18, 16, 36, 14, 12
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1270


FORMULA

a(n) = prime(A006512(n))  prime(A001359(n)).
a(n) = A057473(n)  A057470(n).  Michel Marcus, Jul 27 2017


EXAMPLE

{q, q+2} = {17, 19} is the 4th twinpair and prime(19)  prime(17) = 67  59 = 8, so a(4) = 8.


MATHEMATICA

{ta=Table[0, {1300}], tb=Table[0, {1300}], tc=Table[0, {1300}], u=1}; Do[s=Prime[n+1]Prime[n]; If[Equal[s, 2], ta[[u]]=Prime[Prime[n+1]]Prime[Prime[n]]; tb[[u]]=n; tc[[u]]=Prime[n]; u=u+1], {n, 1, 10000}]; ta


PROG

(PARI) lista(nn) = {forprime(q=2, nn, if (isprime(q+2), print1(prime(q+2)prime(q), ", ")); ); } \\ Michel Marcus, Jul 27 2017


CROSSREFS

Cf. A001359, A006512, A057470, A057473.
Sequence in context: A291545 A205372 A301690 * A220439 A240620 A344328
Adjacent sequences: A096471 A096472 A096473 * A096475 A096476 A096477


KEYWORD

nonn


AUTHOR

Labos Elemer, Jun 23 2004


STATUS

approved



