|
|
A056706
|
|
Numbers k such that 4*10^k + 1*R_k is prime, where R_k = 11...1 is the repunit (A002275) of length k.
|
|
1
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also numbers k such that (37*10^k - 1)/9 is prime.
a(11) > 10^5. - Robert Price, Nov 30 2014
|
|
LINKS
|
Table of n, a(n) for n=1..10.
Makoto Kamada, Prime numbers of the form 411...11.
Index entries for primes involving repunits
|
|
MATHEMATICA
|
Do[ If[ PrimeQ[ 4*10^n + (10^n-1)/9], Print[n]], {n, 0, 10000}]
|
|
CROSSREFS
|
Cf. A002275, A068815.
Sequence in context: A146379 A056714 A120074 * A052454 A330718 A284108
Adjacent sequences: A056703 A056704 A056705 * A056707 A056708 A056709
|
|
KEYWORD
|
hard,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Aug 10 2000
|
|
STATUS
|
approved
|
|
|
|