login
A049453
Second pentagonal numbers with even index: a(n) = n*(6*n+1).
24
0, 7, 26, 57, 100, 155, 222, 301, 392, 495, 610, 737, 876, 1027, 1190, 1365, 1552, 1751, 1962, 2185, 2420, 2667, 2926, 3197, 3480, 3775, 4082, 4401, 4732, 5075, 5430, 5797, 6176, 6567, 6970, 7385, 7812, 8251, 8702, 9165, 9640, 10127, 10626
OFFSET
0,2
COMMENTS
Number of edges in the join of the complete tripartite graph of order 3n and the cycle graph of order n, K_n,n,n * C_n - Roberto E. Martinez II, Jan 07 2002
Sequence found by reading the line (one of the diagonal axes) from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
First bisection of A036498. - Bruno Berselli, Nov 25 2012
FORMULA
G.f.: x*(7+5*x)/(1-x)^3.
a(n) = 12*n + a(n-1) - 5 with n>0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - G. C. Greubel, Jun 07 2017
From Amiram Eldar, Feb 18 2022: (Start)
Sum_{n>=1} 1/a(n) = 6 - sqrt(3)*Pi/2 - 2*log(2) - 3*log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi + log(2) + sqrt(3)*log(2 + sqrt(3)) - 6. (End)
MAPLE
seq(binomial(6*n+1, 2)/3, n=0..42); # Zerinvary Lajos, Jan 21 2007
MATHEMATICA
s=0; lst={s}; Do[s+=n++ +7; AppendTo[lst, s], {n, 0, 7!, 12}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)
Table[n*(6*n + 1), {n, 0, 50}] (* G. C. Greubel, Jun 07 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(x*(7+5*x)/(1-x)^3)) \\ G. C. Greubel, Jun 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
STATUS
approved