login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049456
Triangle T(n,k) = denominator of fraction in k-th term of n-th row of variant of Farey series. This is also Stern's diatomic array read by rows (version 1).
32
1, 1, 1, 2, 1, 1, 3, 2, 3, 1, 1, 4, 3, 5, 2, 5, 3, 4, 1, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 8, 11, 3, 10, 7, 11, 4, 9, 5, 6, 1, 1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14, 11, 19, 8, 21, 13
OFFSET
1,4
COMMENTS
Row n has length 2^(n-1) + 1.
A049455/a(n) gives another version of the Stern-Brocot tree.
Define mediant of a/b and c/d to be (a+c)/(b+d). We get A006842/A006843 if we omit terms from n-th row in which denominator exceeds n.
Largest term of n-th row = A000045(n+1), Fibonacci numbers. - Reinhard Zumkeller, Apr 02 2014
REFERENCES
J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
LINKS
C. Giuli and R. Giuli, A primer on Stern's diatomic sequence, Fib. Quart., 17 (1979), 103-108, 246-248 and 318-320 (but beware errors).
D. H. Lehmer, On Stern's Diatomic Series, Amer. Math. Monthly 36(2) 1929, pp. 59-67.
D. H. Lehmer, On Stern's Diatomic Series, Amer. Math. Monthly 36(1) 1929, pp. 59-67. [Annotated and corrected scanned copy]
M. Shrader-Frechette, Modified Farey sequences and continued fractions, Math. Mag., 54 (1981), 60-63.
FORMULA
Each row is obtained by copying the previous row but interpolating the sums of pairs of adjacent terms. E.g. after 1 2 1 we get 1 1+2 2 2+1 1.
Row 1 of Farey tree is 0/1, 1/1. Obtain row n from row n-1 by inserting mediants between each pair of terms.
EXAMPLE
0/1, 1/1; 0/1, 1/2, 1/1; 0/1, 1/3, 1/2, 2/3, 1/1; 0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1; 0/1, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, ... = A049455/A049456
Array begins
1...............................1
1...............2...............1
1.......3.......2.......3.......1
1...4...3...5...2...5...3...4...1
1.5.4.7.3.8.5.7.2.7.5.8.3.7.4.5.1
.................................
MAPLE
A049456 := proc(n, k)
option remember;
if n =1 then
if k >= 0 and k <=1 then
1;
else
0 ;
end if;
elif type(k, 'even') then
procname(n-1, k/2) ;
else
procname(n-1, (k+1)/2)+procname(n-1, (k-1)/2) ;
end if;
end proc: # R. J. Mathar, Dec 12 2014
MATHEMATICA
Flatten[NestList[Riffle[#, Total/@Partition[#, 2, 1]]&, {1, 1}, 10]] (* Harvey P. Dale, Mar 16 2013 *)
PROG
(Haskell)
import Data.List (transpose)
a049456 n k = a049456_tabf !! (n-1) !! (k-1)
a049456_row n = a049456_tabf !! (n-1)
a049456_tabf = iterate
(\row -> concat $ transpose [row, zipWith (+) row $ tail row]) [1, 1]
-- Reinhard Zumkeller, Apr 02 2014
CROSSREFS
Coincides with A002487 if pairs of adjacent 1's are replaced by single 1's.
Cf. A000051 (row lengths), A034472 (row sums), A293160 (distinct terms in each row).
Sequence in context: A132844 A006843 A324797 * A117506 A179205 A055089
KEYWORD
nonn,easy,tabf,frac,nice,look
STATUS
approved