login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064881
Eisenstein array Ei(1,2).
9
1, 2, 1, 3, 2, 1, 4, 3, 5, 2, 1, 5, 4, 7, 3, 8, 5, 7, 2, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14, 11, 19, 8, 21, 13, 18, 5, 17, 12, 19, 7, 16, 9, 11, 2
OFFSET
1,2
COMMENTS
In Eisenstein's notation this is the array for m=1 and n=2; see example in given reference p. 42. The array for m=n=1 is A049456.
For n >= 1, the number of entries of row n is 2^(n-1)+1 with the difference sequence [2,1,2,4,8,16,...]. Row sums give 3*A007051(n-1).
The binary tree built from the rationals a(n,m)/a(n,m+1), m=0..2^(n-1), for each row n >= 1 gives the subtree of the (Eisenstein-)Stern-Brocot tree in the version of, e.g., Calkin and Wilf (for the reference see A002487 and the link) with root 1/2. The composition rule for this tree is i/j -> i/(i+j), (i+j)/j.
LINKS
R. Backhouse, J. F. Ferreira, On Euclid’s algorithm and elementary number theory, Sci. Comput. Program. 76, No. 3, 160-180 (2011).
N. Calkin and H. S. Wilf, Recounting the Rationals, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363.
F. G. M. Eisenstein, Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhaengen und durch gewisse lineare Funktional-Gleichungen definirt werden, Verhandlungen der Koenigl. Preuss. Akademie der Wiss. Berlin (1850) 36-42, Feb 18, 1850. Werke, II, pp. 705-711.
FORMULA
a(n, m) = a(n-1, m/2) if m is even, else a(n, m) = a(n-1, (m-1)/2) + a(n-1, (m+1)/2), a(1, 0)=1, a(1, 1)=2.
EXAMPLE
{1,2};
{1,3,2};
{1,4,3,5,2};
{1,5,4,7,3,8,5,7,2}; ...
This binary subtree of rationals is built from
1/2;
1/3, 3/2;
1/4, 4/3, 3/5, 5/2; ...
MATHEMATICA
nmax = 6; a[n_, m_?EvenQ] := a[n - 1, m/2]; a[n_, m_?OddQ] := a[n, m] = a[n - 1, (m - 1)/2] + a[n - 1, (m + 1)/2]; a[1, 0] = 1; a[1, 1] = 2; Flatten[ Table[a[n, m], {n, 1, nmax}, {m, 0, 2^(n - 1)}]] (* Jean-François Alcover, Sep 27 2011 *)
eisen = Most@Flatten@Transpose[{#, # + RotateLeft[#]}] &;
Flatten@NestList[eisen, {1, 2}, 6] (* Harlan J. Brothers, Feb 18 2015 *)
CROSSREFS
Sequence in context: A272464 A133404 A134627 * A131967 A358120 A329501
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Oct 19 2001
STATUS
approved