login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132844
Triangle, read by rows, where T(n,k) = {T^[(n+k)/2]}( [(n+k)/2], k) for n>=k>=0, so that antidiagonal {2n} equals row n of T^n for n>=0 and odd antidiagonals equal even antidiagonals.
6
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 3, 1, 1, 3, 9, 3, 4, 1, 1, 13, 9, 18, 4, 5, 1, 1, 13, 42, 18, 30, 5, 6, 1, 1, 73, 42, 95, 30, 45, 6, 7, 1, 1, 73, 270, 95, 179, 45, 63, 7, 8, 1, 1, 466, 270, 693, 179, 301, 63, 84, 8, 9, 1, 1, 466, 1785, 693, 1463, 301, 468, 84, 108, 9, 10, 1, 1
OFFSET
0,8
COMMENTS
Column k of triangle A132845 is equal to column k of this triangle but without repetition of terms.
FORMULA
T(n,k) = A132845( [(n+k)/2], k) where A132845(n,k) = [T^n](n,k) for n>=k>=0.
EXAMPLE
Triangle T begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
3, 2, 3, 1, 1;
3, 9, 3, 4, 1, 1;
13, 9, 18, 4, 5, 1, 1;
13, 42, 18, 30, 5, 6, 1, 1;
73, 42, 95, 30, 45, 6, 7, 1, 1;
73, 270, 95, 179, 45, 63, 7, 8, 1, 1;
466, 270, 693, 179, 301, 63, 84, 8, 9, 1, 1;
466, 1785, 693, 1463, 301, 468, 84, 108, 9, 10, 1, 1;
3309, 1785, 4893, 1463, 2726, 468, 687, 108, 135, 10, 11, 1, 1; ...
Matrix square T^2 begins:
1;
2, 1;
3, 2, 1; <-- antidiagonals 4, 5, of T
5, 5, 2, 1;
12, 9, 7, 2, 1;
25, 31, 13, 9, 2, 1;
75, 63, 58, 17, 11, 2, 1; ...
Matrix cube T^3 begins:
1;
3, 1;
6, 3, 1;
13, 9, 3, 1; <-- antidiagonals 6, 7, of T
33, 22, 12, 3, 1;
87, 75, 31, 15, 3, 1;
265, 204, 132, 40, 18, 3, 1; ...
Matrix 4th power T^4 begins:
1;
4, 1;
10, 4, 1;
26, 14, 4, 1;
73, 42, 18, 4, 1; <-- antidiagonals 8, 9, of T
220, 151, 58, 22, 4, 1;
717, 488, 253, 74, 26, 4, 1; ...
MATHEMATICA
t[n_, k_] := t[n, k] = Module[{q = Quotient[n+k, 2], m, p}, m = Table[ Which[c < r-1, t[r-1, c-1], c <= r, 1, True, 0], {r, 1, q+1}, {c, 1, q+1}]; p = MatrixPower[m, q]; If[k > q, 0, p[[q+1, k+1]]]]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 02 2013, after Pari *)
PROG
(PARI) {T(n, k)=local(M=matrix((n+k)\2+1, (n+k)\2+1, r, c, if(r>=c, if(r<=c+1, 1, T(r-1, c-1))))); (M^((n+k)\2))[(n+k)\2+1, k+1]}
CROSSREFS
Cf. A132845 (triangle); columns: A132846, A132847, A132848, A132849.
Sequence in context: A104467 A132463 A153901 * A006843 A324797 A049456
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 17 2007
STATUS
approved