login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132841
Least increasing logarithmic coefficients such that exponentiation results in an integer sequence (A132842), starting with a(1)=1.
1
1, 3, 4, 7, 11, 12, 15, 23, 31, 33, 34, 40, 53, 59, 74, 87, 103, 111, 115, 117, 123, 124, 139, 152, 161, 185, 193, 203, 204, 222, 249, 279, 301, 309, 340, 355, 371, 383, 407, 413, 452, 467, 474, 480, 506, 509, 518, 552, 554, 583, 616, 657, 690, 705, 759, 779
OFFSET
1,2
EXAMPLE
L.g.f.: A(x) = x + 3x^2/2 + 4x^3/3 + 7x^4/4 + 11x^5/5 + 12x^6/6 + 15x^7/7 +...
exp(A(x)) = 1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + 12x^6 + 18x^7 +...(A132842).
PROG
(PARI) {a(n)=local(A, t, r=1); A=if(n==1, [1], vector(n-1, j, a(j)/j)); if(n==1, r=1, for(j=1, n, if(denominator(Vec(exp(x*Ser(concat(A, (a(n-1)+j)/n))))[n+1])==1, r=a(n-1)+j; j=n+1))); r}
CROSSREFS
Cf. A132842.
Sequence in context: A291063 A047543 A030489 * A274280 A316265 A205477
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 12 2007
STATUS
approved