login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205477 L.g.f.: Sum_{n>=1} (x^n/n) * Product_{d|n} (1 + n*x^d/d). 8
1, 3, 4, 7, 11, 12, 29, 15, 49, 43, 100, 100, 157, 45, 299, 159, 273, 795, 761, 307, 830, 2126, 1657, 3276, 1711, 965, 3505, 6405, 1509, 9967, 6976, 9375, 8188, 24483, 8089, 26299, 20795, 29871, 40408, 112475, 51497, 164022, 27650, 83398, 74639, 208015, 280074 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..47.

FORMULA

Forms the logarithmic derivative of A205476.

EXAMPLE

L.g.f.: L(x) = x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 11*x^5/5 + 12*x^6/6 +...

By definition:

L(x) = x*(1+x) + x^2*(1+2*x)*(1+x^2)/2 + x^3*(1+3*x)*(1+x^3)/3 + x^4*(1+4*x)*(1+2*x^2)*(1+x^4)/4 + x^5*(1+5*x)*(1+x^5)/5 + x^6*(1+6*x)*(1+3*x^2)*(1+2*x^3)*(1+x^6)/6 +...

Exponentiation yields the g.f. of A205476:

exp(L(x)) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 12*x^6 + 20*x^7 +...

MATHEMATICA

max = 50; s = Sum[(x^(n-1)/n)*Product[1+n*x^d/d, {d, Divisors[n]}], {n, 1, max}] + O[x]^max; CoefficientList[s, x]*Range[max] (* Jean-François Alcover, Dec 23 2015 *)

PROG

(PARI) {a(n)=n*polcoeff(sum(m=1, n+1, x^m/m*exp(sumdiv(m, d, log(1+m*x^d/d+x*O(x^n))))), n)}

CROSSREFS

Cf. A205476 (exp), A205479, A205481, A205483, A205485, A205487, A205489, A205491.

Sequence in context: A132841 A274280 A316265 * A023665 A023563 A050120

Adjacent sequences: A205474 A205475 A205476 * A205478 A205479 A205480

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 27 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 12:26 EST 2022. Contains 358586 sequences. (Running on oeis4.)