

A274280


Numbers that are a product of distinct Lucas numbers {1,3,4,7,11,...)


11



1, 3, 4, 7, 11, 12, 18, 21, 28, 29, 33, 44, 47, 54, 72, 76, 77, 84, 87, 116, 123, 126, 132, 141, 188, 198, 199, 203, 216, 228, 231, 304, 308, 319, 322, 329, 348, 369, 378, 492, 504, 517, 521, 522, 532, 564, 594, 597, 609, 792, 796, 812, 836, 843, 846, 861
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See the Comment on distinctproduct sequences in A160009.


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000


EXAMPLE

The Lucas numbers are 1,3,4,7,11,18,29,..., so that the sequence of all products of distinct Lucas numbers, in increasing order, are 1, 3, 4, 7, 11, 12, 18, 21, 28, 29,...


MATHEMATICA

f[1] = 1; f[2] = 3; z = 32; f[n_] := f[n  1] + f[n  2]; f = Table[f[n], {n, 1, z}]; f
s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s
Take[Times@@@Subsets[LucasL[Range[20]]]//Union, 60] (* Harvey P. Dale, Sep 26 2019 *)


CROSSREFS

Cf. A000204, A160009, A274281 (includes 2).
Sequence in context: A047543 A030489 A132841 * A316265 A205477 A023665
Adjacent sequences: A274277 A274278 A274279 * A274281 A274282 A274283


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Jun 17 2016


STATUS

approved



