login
A291063
Number of maximal irredundant sets in the n-wheel graph.
1
1, 3, 4, 7, 11, 12, 15, 15, 31, 63, 67, 100, 144, 213, 344, 479, 698, 993, 1502, 2247, 3252, 4777, 6970, 10284, 15211, 22298, 32728, 47985, 70645, 103962, 152707, 224383, 329509, 484452, 712275, 1046737, 1538165, 2260110, 3321933, 4882575, 7175739
OFFSET
2,2
COMMENTS
The wheel graph is well defined for n >= 4. Sequence extended to n=2 using formula. - Andrew Howroyd, Aug 19 2017
LINKS
Eric Weisstein's World of Mathematics, Maximal Irredundant Set
Eric Weisstein's World of Mathematics, Wheel Graph
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,0,-1,-1,-1,1,3,-1,-1,0,-1,1).
FORMULA
a(n) = A286954(n-1) + 1. - Andrew Howroyd, Aug 19 2017
G.f.: x^2*(1 + 2*x - 6*x^5 - 7*x^6 - 8*x^7 + 9*x^8 + 30*x^9 - 11*x^10 - 12*x^11 - 14*x^13 + 15*x^14) / ((1 - x)*(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)). - Colin Barker, Aug 20 2017
MATHEMATICA
Table[1 + RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, #^(n - 1) &], {n, 2, 20}]
1 + RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, #^Range[20] &]
LinearRecurrence[{1, 1, 0, 0, 0, -1, -1, -1, 1, 3, -1, -1, 0, -1, 1}, {1, 3, 4, 7, 11, 12, 15, 15, 31, 63, 67, 100, 144, 213, 344}, 20]
CoefficientList[
Series[(1 + 2 x - 6 x^5 - 7 x^6 - 8 x^7 + 9 x^8 + 30 x^9 - 11 x^10 - 12 x^11 - 14 x^13 + 15 x^14)/((1 - x) (1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14)), {x, 0, 20}], x]
PROG
(PARI) Vec(x^2*(1 + 2*x - 6*x^5 - 7*x^6 - 8*x^7 + 9*x^8 + 30*x^9 - 11*x^10 - 12*x^11 - 14*x^13 + 15*x^14) / ((1 - x)*(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)) + O(x^60)) \\ Colin Barker, Aug 20 2017
CROSSREFS
Sequence in context: A185506 A328379 A080591 * A047543 A030489 A132841
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Aug 17 2017
EXTENSIONS
a(2)-a(3) and a(21)-a(42) from Andrew Howroyd, Aug 19 2017
STATUS
approved