login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132845
Triangle, read by rows, where row n equals row n of matrix power A132844^n for n>=0, where triangle A132844 is defined by: A132844(n,k) = T( [(n+k)/2], k) for n>=k>=0.
5
1, 1, 1, 3, 2, 1, 13, 9, 3, 1, 73, 42, 18, 4, 1, 466, 270, 95, 30, 5, 1, 3309, 1785, 693, 179, 45, 6, 1, 25425, 13657, 4893, 1463, 301, 63, 7, 1, 209717, 108606, 40506, 11104, 2726, 468, 84, 8, 1, 1837168, 943677, 338277, 99177, 22239, 4653, 687, 108, 9, 1
OFFSET
0,4
FORMULA
T(n,k) = [A132844^n](n,k) where A132844(n,k) = T( [(n+k)/2], k) for n>=k>=0.
EXAMPLE
Triangle T begins:
1;
1, 1;
3, 2, 1;
13, 9, 3, 1;
73, 42, 18, 4, 1;
466, 270, 95, 30, 5, 1;
3309, 1785, 693, 179, 45, 6, 1;
25425, 13657, 4893, 1463, 301, 63, 7, 1;
209717, 108606, 40506, 11104, 2726, 468, 84, 8, 1;
1837168, 943677, 338277, 99177, 22239, 4653, 687, 108, 9, 1;
16995545, 8534290, 3110310, 873440, 213415, 40707, 7440, 965, 135, 10, 1; ...
Triangle A132844 begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
3, 2, 3, 1, 1;
3, 9, 3, 4, 1, 1;
13, 9, 18, 4, 5, 1, 1; ...
where column k of A132844 equals column k of T with terms repeated;
then row n of T equals row n of A132844^n as illustrated below.
Matrix square A132844^2 begins:
1;
2, 1;
3, 2, 1; <-- row 2 of T
5, 5, 2, 1;
12, 9, 7, 2, 1;
25, 31, 13, 9, 2, 1; ...
Matrix cube A132844^3 begins:
1;
3, 1;
6, 3, 1;
13, 9, 3, 1; <-- row 3 of T
33, 22, 12, 3, 1;
87, 75, 31, 15, 3, 1; ...
Matrix 4th power A132844^4 begins:
1;
4, 1;
10, 4, 1;
26, 14, 4, 1;
73, 42, 18, 4, 1; <-- row 4 of T
220, 151, 58, 22, 4, 1; ...
MATHEMATICA
t[n_, k_] := t[n, k] = Module[{m, p}, m = Table[ Which[c < r, t[Quotient[r+c, 2]-1, c-1], c == r, 1, True, 0], {r, 1, n+1}, {c, 1, n+1}]; p = MatrixPower[m, n]; If[k > n, 0, p[[n+1, k+1]]]]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 02 2013, after Pari *)
PROG
(PARI) {T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, if(r<=c+1, 1, T((r+c)\2-1, c-1))))); (M^n)[n+1, k+1]}
CROSSREFS
Cf. A132844 (triangle); columns: A132846, A132847, A132848, A132849.
Sequence in context: A104980 A316566 A134090 * A129652 A154921 A127126
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 17 2007
STATUS
approved