Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Dec 16 2024 14:44:33
%S 1,1,1,2,1,2,2,2,3,2,3,3,3,4,4,4,5,5,6,7,7,8,8,9,10,10,11,11,11,13,13,
%T 15,16,16,18,18,20,22,22,24,25,26,29,30,32,33,34,37,39,41,44,45,47,51,
%U 53,57,59,61,64,67,72,76,79,82,86,89,95,100,103,108,112,118
%N Number of partitions of n into distinct primes (counting 1 as a prime).
%C Honsberger shows that the primes-including-1 are a complete sequence and therefore all numbers in this sequence exceed zero. - _Ron Knott_, Aug 27 2016
%C Number of partitions of n into distinct noncomposite numbers. - _Omar E. Pol_, Dec 14 2024
%D Ross Honsberger, Mathematical Gems III, The Mathematical Association of America, 1985, pages 127-128.
%H Alois P. Heinz, <a href="/A036497/b036497.txt">Table of n, a(n) for n = 0..10000</a>
%F G.f.: (1 + x)*Product_{k>=1} (1 + x^prime(k)). - _Ilya Gutkovskiy_, Dec 31 2016
%e a(11) = 3 since 11 = 1+2+3+5=1+3+7 has 3 partitions of distinct primes-including-1. - _Ron Knott_, Aug 27 2016
%p s:= proc(n) option remember;
%p `if`(n<1, n+1, ithprime(n)+s(n-1))
%p end:
%p b:= proc(n, i) option remember; (p-> `if`(n=0, 1,
%p `if`(n>s(i), 0, b(n, i-1)+ `if`(p>n, 0,
%p b(n-p, i-1)))))(`if`(i<1, 1, ithprime(i)))
%p end:
%p a:= n-> b(n, numtheory[pi](n)):
%p seq(a(n), n=0..100); # _Alois P. Heinz_, Aug 27 2016
%t myprime[ n_ ] := If[ n===0, 1, Prime[ n ] ]; ta1=Table[ Product[ 1+z^myprime[ k ], {k, 0, n} ]~CoefficientList~z, {n, 31, 32} ]; leveled=Count[ Take[ Last@ta1, Length@ta1[ [ -2 ] ] ]-ta1[ [ -2 ] ], 0 ]; Take[ Last@ta1, leveled ]
%t Table[Length@ DeleteCases[DeleteCases[IntegerPartitions@ n, {___, a_, ___} /; CompositeQ@ a], w_ /; MemberQ[Differences@ w, 0]], {n, 0, 60}] (* _Michael De Vlieger_, Aug 27 2016 *)
%Y Cf. A000586, A008578.
%K nonn
%O 0,4
%A _Wouter Meeussen_, Dec 17 1998