The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165685 Dimension of the space of Siegel cusp forms of genus 2 and weight n. 4
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 5, 0, 5, 0, 7, 0, 8, 0, 9, 0, 11, 1, 13, 0, 13, 1, 17, 1, 18, 1, 20, 2, 23, 3, 26, 2, 27, 4, 32, 4, 34, 5, 37, 6, 41, 8, 46, 7, 47, 10, 54, 11, 57, 12, 61, 14, 67, 17, 73, 16, 75, 21, 84, 22, 88, 24, 94, 27, 101, 31, 109, 31, 112 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,16 REFERENCES M. Eie, Dimensions of spaces of Siegel cusp forms of degree two and three, AMS, 1984, p. 44-45. LINKS Andy Huchala, Table of n, a(n) for n = 1..20000 Andy Huchala, Proof of generating function. FORMULA G.f.: x^10 (1+x^2-x^5-x^7+x^10-x^15+x^20) / ((-1+x)^4 (1+x)^3 (1+2x^2+2x^4+x^6)^2 (1+x+x^4+x^7+x^8)). - Andy Huchala, Mar 03 2022 a(2n) = A165684(n) and a(2n+35) = A029143(n). - Andy Huchala, Mar 04 2022 EXAMPLE a(35)=1 as the dimension of the space of Siegel cusp form of genus 2 and weight 35 is 1. MATHEMATICA N1[k_] := 2^(-7)*3^(-3)*5^(-1) (2 k^3 + 96 k^2 - 52 k - 3231) /; Mod[k, 2] == 0; N1[k_] := 2^(-7)*3^(-3)*5^(-1)*(2 k^3 - 114 k^2 + 2018 k - 9051) /; Mod[k, 2] == 1; N2[k_] := 2^(-5)*3^(-3)*(17 k - 294) /; Mod[k, 12] == 0; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 325) /; Mod[k, 12] == 1; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 254) /; Mod[k, 12] == 2; N2[k_] := 2^(-5)*3^(-3)*(17 k - 261) /; Mod[k, 12] == 3; N2[k_] := 2^(-5)*3^(-3)*(17 k - 86) /; Mod[k, 12] == 4; N2[k_] := 2^(-5)*3^(-3)*(-k + 53) /; Mod[k, 12] == 5; N2[k_] := 2^(-5)*3^(-3)*(-k - 42) /; Mod[k, 12] == 6; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 91) /; Mod[k, 12] == 7; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 2) /; Mod[k, 12] == 8; N2[k_] := 2^(-5)*3^(-3)*(-k - 27) /; Mod[k, 12] == 9; N2[k_] := 2^(-5)*3^(-3)*(-k + 166) /; Mod[k, 12] == 10; N2[k_] := 2^(-5)*3^(-3)*(17 k - 181) /; Mod[k, 12] == 11; N3[k_] := 2^(-7)*3^(-3)*1131 /; Mod[k, 12] == 0; N3[k_] := 2^(-7)*3^(-3)*229 /; Mod[k, 12] == 1; N3[k_] := 2^(-7)*3^(-3)*(-229) /; Mod[k, 12] == 2; N3[k_] := 2^(-7)*3^(-3)*(-1131) /; Mod[k, 12] == 3; N3[k_] := 2^(-7)*3^(-3)*427 /; Mod[k, 12] == 4; N3[k_] := 2^(-7)*3^(-3)*(-571) /; Mod[k, 12] == 5; N3[k_] := 2^(-7)*3^(-3)*123 /; Mod[k, 12] == 6; N3[k_] := 2^(-7)*3^(-3)*(-203) /; Mod[k, 12] == 7; N3[k_] := 2^(-7)*3^(-3)*203 /; Mod[k, 12] == 8; N3[k_] := 2^(-7)*3^(-3)*(-123) /; Mod[k, 12] == 9; N3[k_] := 2^(-7)*3^(-3)*571 /; Mod[k, 12] == 10; N3[k_] := 2^(-7)*3^(-3)*(-427) /; Mod[k, 12] == 11; N4[k_] := 5^(-1) /; Mod[k, 5] == 0; N4[k_] := -5^(-1) /; Mod[k, 5] == 3; N4[k_] := 0 /; Mod[k, 5] == 1 || Mod[k, 5] == 2 || Mod[k, 5] == 4; DimSk[k_] := If[k >= 7, N1[k] + N2[k] + N3[k] + N4[k], 0]; Table[ DimSk[k], {k, 1, 100}] (* second program: *) init = {0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 5, 0, 5, 0}; ker = {0, 0, 0, 1, 1, 1, 0, 0, -1, -1, -1, 1, 0, 0, 1, -1, -1, -1, 0, 0, 1, 1, 1, 0, 0, 0, -1}; ans = LinearRecurrence[ker, init, 100]; ans[[3]] = 0 ; ans (* Andy Huchala, Mar 03 2022 *) PROG (Sage) R. = PowerSeriesRing(ZZ, 100); p = x^26 + x^24 - x^21 - x^19 + x^18 - x^17 - x^14 - x^13 + x^10 + x^9 + x^8 + x^7 - x^3; q = x^27 - x^23 - x^22 - x^21 + x^18 + x^17 + x^16 - x^15 - x^12 + x^11 + x^10 + x^9 - x^6 - x^5 - x^4 + 1; (x^3 + p/q).list()[1:] # Andy Huchala, Mar 03 2022 CROSSREFS Cf. A008615, A029143. A165684 gives only the even weights. Sequence in context: A029192 A128619 A008613 * A035457 A005868 A035455 Adjacent sequences: A165682 A165683 A165684 * A165686 A165687 A165688 KEYWORD nonn AUTHOR Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009 EXTENSIONS a(73) corrected by Andy Huchala, Mar 02 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 15:40 EDT 2024. Contains 375165 sequences. (Running on oeis4.)