OFFSET
1,16
REFERENCES
M. Eie, Dimensions of spaces of Siegel cusp forms of degree two and three, AMS, 1984, p. 44-45.
LINKS
Andy Huchala, Table of n, a(n) for n = 1..20000
Andy Huchala, Proof of generating function.
FORMULA
G.f.: x^10 (1+x^2-x^5-x^7+x^10-x^15+x^20) / ((-1+x)^4 (1+x)^3 (1+2x^2+2x^4+x^6)^2 (1+x+x^4+x^7+x^8)). - Andy Huchala, Mar 03 2022
EXAMPLE
a(35)=1 as the dimension of the space of Siegel cusp form of genus 2 and weight 35 is 1.
MATHEMATICA
N1[k_] := 2^(-7)*3^(-3)*5^(-1) (2 k^3 + 96 k^2 - 52 k - 3231) /; Mod[k, 2] == 0; N1[k_] := 2^(-7)*3^(-3)*5^(-1)*(2 k^3 - 114 k^2 + 2018 k - 9051) /; Mod[k, 2] == 1; N2[k_] := 2^(-5)*3^(-3)*(17 k - 294) /; Mod[k, 12] == 0; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 325) /; Mod[k, 12] == 1; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 254) /; Mod[k, 12] == 2; N2[k_] := 2^(-5)*3^(-3)*(17 k - 261) /; Mod[k, 12] == 3; N2[k_] := 2^(-5)*3^(-3)*(17 k - 86) /; Mod[k, 12] == 4; N2[k_] := 2^(-5)*3^(-3)*(-k + 53) /; Mod[k, 12] == 5; N2[k_] := 2^(-5)*3^(-3)*(-k - 42) /; Mod[k, 12] == 6; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 91) /; Mod[k, 12] == 7; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 2) /; Mod[k, 12] == 8; N2[k_] := 2^(-5)*3^(-3)*(-k - 27) /; Mod[k, 12] == 9;
N2[k_] := 2^(-5)*3^(-3)*(-k + 166) /; Mod[k, 12] == 10; N2[k_] := 2^(-5)*3^(-3)*(17 k - 181) /; Mod[k, 12] == 11; N3[k_] := 2^(-7)*3^(-3)*1131 /; Mod[k, 12] == 0; N3[k_] := 2^(-7)*3^(-3)*229 /; Mod[k, 12] == 1; N3[k_] := 2^(-7)*3^(-3)*(-229) /; Mod[k, 12] == 2; N3[k_] := 2^(-7)*3^(-3)*(-1131) /; Mod[k, 12] == 3; N3[k_] := 2^(-7)*3^(-3)*427 /; Mod[k, 12] == 4; N3[k_] := 2^(-7)*3^(-3)*(-571) /; Mod[k, 12] == 5;
N3[k_] := 2^(-7)*3^(-3)*123 /; Mod[k, 12] == 6; N3[k_] := 2^(-7)*3^(-3)*(-203) /; Mod[k, 12] == 7; N3[k_] := 2^(-7)*3^(-3)*203 /; Mod[k, 12] == 8; N3[k_] := 2^(-7)*3^(-3)*(-123) /; Mod[k, 12] == 9; N3[k_] := 2^(-7)*3^(-3)*571 /; Mod[k, 12] == 10; N3[k_] := 2^(-7)*3^(-3)*(-427) /; Mod[k, 12] == 11; N4[k_] := 5^(-1) /; Mod[k, 5] == 0; N4[k_] := -5^(-1) /; Mod[k, 5] == 3; N4[k_] := 0 /; Mod[k, 5] == 1 || Mod[k, 5] == 2 || Mod[k, 5] == 4;
DimSk[k_] := If[k >= 7, N1[k] + N2[k] + N3[k] + N4[k], 0];
Table[ DimSk[k], {k, 1, 100}]
(* second program: *)
init = {0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 5, 0, 5, 0};
ker = {0, 0, 0, 1, 1, 1, 0, 0, -1, -1, -1, 1, 0, 0, 1, -1, -1, -1, 0, 0, 1, 1, 1, 0, 0, 0, -1};
ans = LinearRecurrence[ker, init, 100];
ans[[3]] = 0 ; ans (* Andy Huchala, Mar 03 2022 *)
PROG
(Sage)
R.<x> = PowerSeriesRing(ZZ, 100);
p = x^26 + x^24 - x^21 - x^19 + x^18 - x^17 - x^14 - x^13 + x^10 + x^9 + x^8 + x^7 - x^3;
q = x^27 - x^23 - x^22 - x^21 + x^18 + x^17 + x^16 - x^15 - x^12 + x^11 + x^10 + x^9 - x^6 - x^5 - x^4 + 1;
(x^3 + p/q).list()[1:] # Andy Huchala, Mar 03 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009
EXTENSIONS
a(73) corrected by Andy Huchala, Mar 02 2022
STATUS
approved