login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165685
Dimension of the space of Siegel cusp forms of genus 2 and weight n.
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 5, 0, 5, 0, 7, 0, 8, 0, 9, 0, 11, 1, 13, 0, 13, 1, 17, 1, 18, 1, 20, 2, 23, 3, 26, 2, 27, 4, 32, 4, 34, 5, 37, 6, 41, 8, 46, 7, 47, 10, 54, 11, 57, 12, 61, 14, 67, 17, 73, 16, 75, 21, 84, 22, 88, 24, 94, 27, 101, 31, 109, 31, 112
OFFSET
1,16
REFERENCES
M. Eie, Dimensions of spaces of Siegel cusp forms of degree two and three, AMS, 1984, p. 44-45.
FORMULA
G.f.: x^10 (1+x^2-x^5-x^7+x^10-x^15+x^20) / ((-1+x)^4 (1+x)^3 (1+2x^2+2x^4+x^6)^2 (1+x+x^4+x^7+x^8)). - Andy Huchala, Mar 03 2022
a(2n) = A165684(n) and a(2n+35) = A029143(n). - Andy Huchala, Mar 04 2022
EXAMPLE
a(35)=1 as the dimension of the space of Siegel cusp form of genus 2 and weight 35 is 1.
MATHEMATICA
N1[k_] := 2^(-7)*3^(-3)*5^(-1) (2 k^3 + 96 k^2 - 52 k - 3231) /; Mod[k, 2] == 0; N1[k_] := 2^(-7)*3^(-3)*5^(-1)*(2 k^3 - 114 k^2 + 2018 k - 9051) /; Mod[k, 2] == 1; N2[k_] := 2^(-5)*3^(-3)*(17 k - 294) /; Mod[k, 12] == 0; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 325) /; Mod[k, 12] == 1; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 254) /; Mod[k, 12] == 2; N2[k_] := 2^(-5)*3^(-3)*(17 k - 261) /; Mod[k, 12] == 3; N2[k_] := 2^(-5)*3^(-3)*(17 k - 86) /; Mod[k, 12] == 4; N2[k_] := 2^(-5)*3^(-3)*(-k + 53) /; Mod[k, 12] == 5; N2[k_] := 2^(-5)*3^(-3)*(-k - 42) /; Mod[k, 12] == 6; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 91) /; Mod[k, 12] == 7; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 2) /; Mod[k, 12] == 8; N2[k_] := 2^(-5)*3^(-3)*(-k - 27) /; Mod[k, 12] == 9;
N2[k_] := 2^(-5)*3^(-3)*(-k + 166) /; Mod[k, 12] == 10; N2[k_] := 2^(-5)*3^(-3)*(17 k - 181) /; Mod[k, 12] == 11; N3[k_] := 2^(-7)*3^(-3)*1131 /; Mod[k, 12] == 0; N3[k_] := 2^(-7)*3^(-3)*229 /; Mod[k, 12] == 1; N3[k_] := 2^(-7)*3^(-3)*(-229) /; Mod[k, 12] == 2; N3[k_] := 2^(-7)*3^(-3)*(-1131) /; Mod[k, 12] == 3; N3[k_] := 2^(-7)*3^(-3)*427 /; Mod[k, 12] == 4; N3[k_] := 2^(-7)*3^(-3)*(-571) /; Mod[k, 12] == 5;
N3[k_] := 2^(-7)*3^(-3)*123 /; Mod[k, 12] == 6; N3[k_] := 2^(-7)*3^(-3)*(-203) /; Mod[k, 12] == 7; N3[k_] := 2^(-7)*3^(-3)*203 /; Mod[k, 12] == 8; N3[k_] := 2^(-7)*3^(-3)*(-123) /; Mod[k, 12] == 9; N3[k_] := 2^(-7)*3^(-3)*571 /; Mod[k, 12] == 10; N3[k_] := 2^(-7)*3^(-3)*(-427) /; Mod[k, 12] == 11; N4[k_] := 5^(-1) /; Mod[k, 5] == 0; N4[k_] := -5^(-1) /; Mod[k, 5] == 3; N4[k_] := 0 /; Mod[k, 5] == 1 || Mod[k, 5] == 2 || Mod[k, 5] == 4;
DimSk[k_] := If[k >= 7, N1[k] + N2[k] + N3[k] + N4[k], 0];
Table[ DimSk[k], {k, 1, 100}]
(* second program: *)
init = {0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 5, 0, 5, 0};
ker = {0, 0, 0, 1, 1, 1, 0, 0, -1, -1, -1, 1, 0, 0, 1, -1, -1, -1, 0, 0, 1, 1, 1, 0, 0, 0, -1};
ans = LinearRecurrence[ker, init, 100];
ans[[3]] = 0 ; ans (* Andy Huchala, Mar 03 2022 *)
PROG
(Sage)
R.<x> = PowerSeriesRing(ZZ, 100);
p = x^26 + x^24 - x^21 - x^19 + x^18 - x^17 - x^14 - x^13 + x^10 + x^9 + x^8 + x^7 - x^3;
q = x^27 - x^23 - x^22 - x^21 + x^18 + x^17 + x^16 - x^15 - x^12 + x^11 + x^10 + x^9 - x^6 - x^5 - x^4 + 1;
(x^3 + p/q).list()[1:] # Andy Huchala, Mar 03 2022
CROSSREFS
Cf. A008615, A029143. A165684 gives only the even weights.
Sequence in context: A029192 A128619 A008613 * A035457 A005868 A035455
KEYWORD
nonn
AUTHOR
Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009
EXTENSIONS
a(73) corrected by Andy Huchala, Mar 02 2022
STATUS
approved