The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165686 Dimension of the space of Siegel cusp forms of genus 2 and weight 2k which are not Saito-Kurokawa lifts of forms of genus 1. 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 8, 11, 12, 14, 16, 19, 20, 24, 26, 29, 32, 37, 38, 44, 47, 51, 56, 62, 64, 72, 76, 82, 88, 96, 99, 109, 115, 122, 130, 140, 144, 157, 164, 173, 183, 195, 201, 216, 225, 236, 248, 263, 270, 288, 299, 312, 327, 344, 353, 374 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,12 COMMENTS Also the dimension of the largest Hecke-closed subspace of forms in S_k(Gamma_2) which satisfy the Ramanujan-Petersson conjecture. These forms are also characterized by the property that their (Andrianov) spinor zeta function does not have any pole. REFERENCES M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhaeusser, 1985. T. Oda, On the poles of Andrianov L-functions, Math. Ann. 256(3), p. 323-340, 1981. R. Weissauer, The Ramanujan conjecture for genus two Siegel modular forms (an application of the trace formula). Preprint, Mannheim (1993) LINKS Table of n, a(n) for n=1..68. Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,0,1,-1,-2,-1,1,0,0,1,1,0,-1). FORMULA For k > 1 we have a(k) = A165684(k) - A008615(2k-5). Conjectured G.f.: -x^10*(x^7+x^6-x^2-x-1) / ((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). - Colin Barker, Mar 30 2013 EXAMPLE a(20)=1 because there is exactly one Siegel modular form of genus 2 and weight 20 which is not a lift of some form of genus 1. CROSSREFS Cf. A165684 for the full space of Siegel cusp forms. See also A029143, A027640, A165685. Sequence in context: A111212 A338317 A141286 * A025209 A125573 A034139 Adjacent sequences: A165683 A165684 A165685 * A165687 A165688 A165689 KEYWORD nonn,easy AUTHOR Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 04:35 EDT 2024. Contains 375018 sequences. (Running on oeis4.)