This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A029143 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). Molien series for u.g.g.r. #31 of order 46080. Poincaré series [or Poincare series] for ring of even weight Siegel modular forms of genus 2. 3
 1, 0, 1, 1, 1, 2, 3, 2, 4, 4, 5, 6, 8, 7, 10, 11, 12, 14, 17, 16, 21, 22, 24, 27, 31, 31, 37, 39, 42, 46, 52, 52, 60, 63, 67, 73, 80, 81, 91, 95, 101, 108, 117, 119, 131, 137, 144, 153, 164, 167, 182, 189, 198, 209, 222 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS a(k) for k>0 is the dimension of the space of Siegel modular forms of genus 2 and weight 2k (for the full modular group Gamma_2). Also: Number of solutions of 4x+6y+10z+12w=k in nonnegative integers x,y,z,w. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009 Number of partitions of n into parts 2, 3, 5, and 6. - Joerg Arndt, Jun 21 2014 REFERENCES J. Igusa, On Siegel modular forms of genus 2, Amer. J. Math., 84 (1962), 175-200. H. Klingen, Intro. lectures on Siegel modular forms, Cambridge, p. 123, Corollary. L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 31). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi) W. C. Huffman, The biweight enumerator of self-orthogonal binary codes, Discr. Math. Vol. 26 1979, pp. 129-143. Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 0, 0, 1, -1, -2, -1, 1, 0, 0, 1, 1, 0, -1). FORMULA a(n) = A165684(n) + A008615(n+2). - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009 a(n) ~ 1/1080*n^3. - Ralf Stephan, Apr 29 2014 a(0)=1, a(1)=0, a(2)=1, a(3)=1, a(4)=1, a(5)=2, a(6)=3, a(7)=2, a(8)=4, a(9)=4, a(10)=5, a(11)=6, a(12)=8, a(13)=7, a(14)=10, a(15)=11, a(n)= a(n-2)+ a(n-3)+a(n-6)-a(n-7)- 2*a(n-8)-a(n-9)+a(n-10)+a(n-13)+ a(n-14)- a(n-16). - Harvey P. Dale, May 12 2015 MAPLE M := Matrix(16, (i, j)-> if (i=j-1) or (j=1 and member(i, [2, 3, 6, 10, 13, 14])) then 1 elif j=1 and member(i, [7, 9, 16]) then -1 elif j=1 and i=8 then -2 else 0 fi): a:= n -> (M^(n))[1, 1]: seq(a(n), n=0..54); # Alois P. Heinz, Jul 25 2008 MATHEMATICA CoefficientList[Series[1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)), {x, 0, 54}], x] (* Jean-François Alcover, Mar 20 2011 *) LinearRecurrence[{0, 1, 1, 0, 0, 1, -1, -2, -1, 1, 0, 0, 1, 1, 0, -1}, {1, 0, 1, 1, 1, 2, 3, 2, 4, 4, 5, 6, 8, 7, 10, 11}, 60] (* Harvey P. Dale, May 12 2015 *) CROSSREFS Cf. A027640 for the dimension of even and odd weight Siegel modular forms. See A165684 (resp. A165685) for the corresponding space of cusp forms. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009 Sequence in context: A179806 A182762 A173997 * A153846 A284383 A072406 Adjacent sequences:  A029140 A029141 A029142 * A029144 A029145 A029146 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS Definition corrected by Kilian Kilger (kilian(AT)nihilnovi.de), Sep 25 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 04:20 EST 2019. Contains 329991 sequences. (Running on oeis4.)