|
|
A029143
|
|
Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). Molien series for u.g.g.r. #31 of order 46080. Poincaré series [or Poincare series] for ring of even weight Siegel modular forms of genus 2.
|
|
5
|
|
|
1, 0, 1, 1, 1, 2, 3, 2, 4, 4, 5, 6, 8, 7, 10, 11, 12, 14, 17, 16, 21, 22, 24, 27, 31, 31, 37, 39, 42, 46, 52, 52, 60, 63, 67, 73, 80, 81, 91, 95, 101, 108, 117, 119, 131, 137, 144, 153, 164, 167, 182, 189, 198, 209, 222
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
a(k) for k>0 is the dimension of the space of Siegel modular forms of genus 2 and weight 2k (for the full modular group Gamma_2). Also: Number of solutions of 4x+6y+10z+12w=k in nonnegative integers x,y,z,w. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009
Number of partitions of n into parts 2, 3, 5, and 6. - Joerg Arndt, Jun 21 2014
|
|
REFERENCES
|
H. Klingen, Intro. lectures on Siegel modular forms, Cambridge, p. 123, Corollary.
L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 31).
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,0,1,-1,-2,-1,1,0,0,1,1,0,-1).
|
|
FORMULA
|
a(n) = A165684(n) + A008615(n+2). - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009
a(0)=1, a(1)=0, a(2)=1, a(3)=1, a(4)=1, a(5)=2, a(6)=3, a(7)=2, a(8)=4, a(9)=4, a(10)=5, a(11)=6, a(12)=8, a(13)=7, a(14)=10, a(15)=11, a(n)= a(n-2)+ a(n-3)+a(n-6)-a(n-7)- 2*a(n-8)-a(n-9)+a(n-10)+a(n-13)+ a(n-14)- a(n-16). - Harvey P. Dale, May 12 2015
|
|
MAPLE
|
M := Matrix(16, (i, j)-> if (i=j-1) or (j=1 and member(i, [2, 3, 6, 10, 13, 14])) then 1 elif j=1 and member(i, [7, 9, 16]) then -1 elif j=1 and i=8 then -2 else 0 fi): a:= n -> (M^(n))[1, 1]: seq(a(n), n=0..54); # Alois P. Heinz, Jul 25 2008
|
|
MATHEMATICA
|
CoefficientList[Series[1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)), {x, 0, 54}], x] (* Jean-François Alcover, Mar 20 2011 *)
LinearRecurrence[{0, 1, 1, 0, 0, 1, -1, -2, -1, 1, 0, 0, 1, 1, 0, -1}, {1, 0, 1, 1, 1, 2, 3, 2, 4, 4, 5, 6, 8, 7, 10, 11}, 60] (* Harvey P. Dale, May 12 2015 *)
|
|
CROSSREFS
|
Cf. A027640 for the dimension of even and odd weight Siegel modular forms. See A165684 (resp. A165685) for the corresponding space of cusp forms. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Definition corrected by Kilian Kilger (kilian(AT)nihilnovi.de), Sep 25 2009
|
|
STATUS
|
approved
|
|
|
|