login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). Molien series for u.g.g.r. #31 of order 46080. Poincaré series [or Poincare series] for ring of even weight Siegel modular forms of genus 2.
5

%I #45 Jan 31 2022 06:48:26

%S 1,0,1,1,1,2,3,2,4,4,5,6,8,7,10,11,12,14,17,16,21,22,24,27,31,31,37,

%T 39,42,46,52,52,60,63,67,73,80,81,91,95,101,108,117,119,131,137,144,

%U 153,164,167,182,189,198,209,222

%N Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). Molien series for u.g.g.r. #31 of order 46080. Poincaré series [or Poincare series] for ring of even weight Siegel modular forms of genus 2.

%C a(k) for k>0 is the dimension of the space of Siegel modular forms of genus 2 and weight 2k (for the full modular group Gamma_2). Also: Number of solutions of 4x+6y+10z+12w=k in nonnegative integers x,y,z,w. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009

%C Number of partitions of n into parts 2, 3, 5, and 6. - _Joerg Arndt_, Jun 21 2014

%D H. Klingen, Intro. lectures on Siegel modular forms, Cambridge, p. 123, Corollary.

%D L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 31).

%H Seiichi Manyama, <a href="/A029143/b029143.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vincenzo Librandi)

%H W. C. Huffman, <a href="http://dx.doi.org/10.1016/0012-365X(79)90119-5">The biweight enumerator of self-orthogonal binary codes</a>, Discr. Math. Vol. 26 1979, pp. 129-143.

%H J. Igusa, <a href="https://www.jstor.org/stable/2372812">On Siegel modular forms of genus 2</a>, Amer. J. Math., 84 (1962), 175-200.

%H <a href="/index/Mo#Molien">Index entries for Molien series</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,0,0,1,-1,-2,-1,1,0,0,1,1,0,-1).

%F a(n) = A165684(n) + A008615(n+2). - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009

%F a(n) ~ 1/1080*n^3. - _Ralf Stephan_, Apr 29 2014

%F a(0)=1, a(1)=0, a(2)=1, a(3)=1, a(4)=1, a(5)=2, a(6)=3, a(7)=2, a(8)=4, a(9)=4, a(10)=5, a(11)=6, a(12)=8, a(13)=7, a(14)=10, a(15)=11, a(n)= a(n-2)+ a(n-3)+a(n-6)-a(n-7)- 2*a(n-8)-a(n-9)+a(n-10)+a(n-13)+ a(n-14)- a(n-16). - _Harvey P. Dale_, May 12 2015

%p M := Matrix(16, (i,j)-> if (i=j-1) or (j=1 and member(i, [2, 3, 6, 10, 13, 14])) then 1 elif j=1 and member(i, [7, 9, 16]) then -1 elif j=1 and i=8 then -2 else 0 fi): a:= n -> (M^(n))[1,1]: seq(a(n), n=0..54); # _Alois P. Heinz_, Jul 25 2008

%t CoefficientList[Series[1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)),{x,0,54}],x] (* _Jean-François Alcover_, Mar 20 2011 *)

%t LinearRecurrence[{0,1,1,0,0,1,-1,-2,-1,1,0,0,1,1,0,-1},{1,0,1,1,1,2,3,2,4,4,5,6,8,7,10,11},60] (* _Harvey P. Dale_, May 12 2015 *)

%Y Cf. A027640 for the dimension of even and odd weight Siegel modular forms. See A165684 (resp. A165685) for the corresponding space of cusp forms. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009

%K nonn,easy,nice

%O 0,6

%A _N. J. A. Sloane_

%E Definition corrected by Kilian Kilger (kilian(AT)nihilnovi.de), Sep 25 2009