

A284383


a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 2; a(n) is the largest composite number <= (a(na(n1)) + a(na(n2))) for n > 4.


4



1, 2, 3, 2, 4, 4, 6, 4, 6, 6, 8, 6, 10, 6, 10, 10, 12, 8, 14, 10, 14, 10, 16, 10, 16, 16, 16, 12, 22, 12, 20, 16, 22, 14, 24, 16, 24, 16, 26, 16, 26, 26, 24, 18, 30, 22, 28, 26, 30, 20, 34, 24, 36, 20, 38, 24, 36, 24, 40, 26, 38, 26, 40, 26, 42, 26, 42, 42, 32, 28, 50, 28, 46, 34
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Altug Alkan, Table of n, a(n) for n = 1..10000
Altug Alkan, Alternative scatterplot of A284383
Altug Alkan, Illustration for A284383


FORMULA

a(1) = 1, a(2) = 2, a(3) = 3; a(n) = a(na(n1)) + a(na(n2))  A010051(a(na(n1)) + a(na(n2))) for n > 3.


EXAMPLE

a(5) = 4 because a(5  a(4)) + a(5  a(3)) = a(3) + a(2) = 3 + 2 = 5 and largest composite number <= 5 is 4.


MATHEMATICA

a[n_] := a[n] = If[n <= 4, n  2 Boole[n == 4], k = 0; While[! CompositeQ@ Set[m, a[n  a[n  1]] + a[n  a[n  2]]  k], k++]; m]; Array[a, 74] (* Michael De Vlieger, Mar 29 2017 *)


PROG

(PARI) f(n) = nisprime(n);
a=vector(1000); a[1]=1; a[2]=2; a[3]=3; for(n=4, #a, a[n] = f(a[na[n1]]+a[na[n2]])); a


CROSSREFS

Cf. A005185, A010051, A014684, A113523, A284374.
Sequence in context: A173997 A029143 A153846 * A072406 A297117 A120680
Adjacent sequences: A284380 A284381 A284382 * A284384 A284385 A284386


KEYWORD

nonn


AUTHOR

Altug Alkan, Mar 26 2017


STATUS

approved



