login
A153846
Number of non-isomorphic I-graphs I(n,j,k) on 2n vertices (1<=j,k<=Floor[(n-1)/2]).
1
1, 1, 2, 3, 2, 4, 4, 6, 3, 11, 4, 7, 10, 10, 5, 14, 5, 17, 12, 11, 6, 28, 10, 14, 13, 21, 8, 35, 8, 22, 17, 18, 17, 41, 10, 19, 20, 40, 11, 44, 11, 31, 32, 23, 12, 60, 16, 36, 25, 37, 14, 49, 24, 50, 27, 30, 15, 93, 16, 31, 40, 46, 29, 64, 17, 47, 32, 63, 18, 96, 19, 38, 49, 51, 30
OFFSET
3,3
COMMENTS
The I-graph I(n,j,k) is a graph with vertex set V(I(n,j,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(I(n,j,k)) = {u_i u_{i+j}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n. The I-graphs generalize the family of generalized Petersen graphs.
REFERENCES
I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.
LINKS
Marko Boben, Tomaz Pisanski, Arjana Zitnik, I-graphs and the corresponding configurations J. Combin. Des. 13 (2005), no. 6, 406--424.
B. Horvat, T. Pisanski; A. Zitnik. Isomorphism checking of I-graphs, Graphs Comb. 28, No. 6, 823-830 (2012).
Eric Weisstein's World of Mathematics, Graph Expansion
CROSSREFS
Sequence in context: A173997 A029143 A363263 * A284383 A072406 A297117
KEYWORD
nonn
AUTHOR
Tomaz Pisanski, Jan 08 2009
STATUS
approved