OFFSET
3,3
COMMENTS
The I-graph I(n,j,k) is a graph with vertex set V(I(n,j,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(I(n,j,k)) = {u_i u_{i+j}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n. The I-graphs generalize the family of generalized Petersen graphs.
REFERENCES
I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.
LINKS
Marko Boben, Tomaz Pisanski, Arjana Zitnik, I-graphs and the corresponding configurations J. Combin. Des. 13 (2005), no. 6, 406--424.
M. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969), 152-164.
Eric Weisstein's World of Mathematics, Graph Expansion
CROSSREFS
KEYWORD
nonn
AUTHOR
Tomaz Pisanski, Jan 08 2009
STATUS
approved