OFFSET
1,4
LINKS
G. C. Greubel, Rows n = 1..100 of the triangle, flattened
FORMULA
T(n, k) = A127647 * A128174, an infinite lower triangular matrix. In odd rows, n terms of F(n), 0, F(n),...; in the n-th row. In even rows, n terms of 0, F(n), 0,...; in the n-th row.
Sum_{k=1..n} T(n, k) = A128620(n-1).
From G. C. Greubel, Mar 16 2024: (Start)
T(n, k) = Fibonacci(n)*(1 + (-1)^(n+k))/2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^n*A128620(n-1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1-(-1)^n)*A096140(floor((n + 1)/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1 - (-1)^n)*( Fibonacci(n-1) + (-1)^floor((n-1)/2) * Fibonacci(floor((n-3)/2)) ). (End)
EXAMPLE
First few rows of the triangle are:
1;
0, 1;
2, 0, 2;
0, 3, 0, 3;
5, 0, 5, 0, 5;
0, 8, 0, 8, 0, 8;
13, 0, 13, 0, 13, 0, 13;
0, 21, 0, 21, 0, 21, 0, 21,
...
MATHEMATICA
Table[Fibonacci[n]*Mod[n+k+1, 2], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Mar 16 2024 *)
PROG
(Magma) [((n+k+1) mod 2)*Fibonacci(n): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 17 2024
(SageMath) flatten([[((n+k+1)%2)*fibonacci(n) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Mar 17 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Mar 14 2007
STATUS
approved