login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128621
A127648 * A128174 as an infinite lower triangular matrix.
3
1, 0, 2, 3, 0, 3, 0, 4, 0, 4, 5, 0, 5, 0, 5, 0, 6, 0, 6, 0, 6, 7, 0, 7, 0, 7, 0, 7, 0, 8, 0, 8, 0, 8, 0, 8, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 11, 0, 11, 0, 11, 0, 11, 0, 11, 0, 11, 0, 12, 0, 12, 0, 12, 0, 12, 0, 12, 0, 12, 13, 0, 13, 0, 13, 0, 13, 0, 13, 0, 13, 0, 13
OFFSET
1,3
FORMULA
Odd rows: n terms of n, 0, n, ...; even rows, n terms of 0, n, 0, ...
T(n,k) = n if n+k even, T(n,k) = 0 if n+k odd.
Sum_{k=1..n} T(n, k) = A093005(n) (row sums).
From G. C. Greubel, Mar 13 2024: (Start)
T(n, k) = n*(1 + (-1)^(n+k))/2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n+1)*A093005(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1-(-1)^n) * A000326(floor((n+1)/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1 - (-1)^n)*A123684(floor((n+1)/2)). (End)
EXAMPLE
First few rows of the triangle:
1;
0, 2;
3, 0, 3;
0, 4, 0, 4;
5, 0, 5, 0, 5;
...
MATHEMATICA
Table[n*(1+(-1)^(n+k))/2, {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Mar 13 2024 *)
PROG
(Magma) [n*(1+(-1)^(n+k))/2: k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 13 2024
(SageMath) flatten([[n*(1+(-1)^(n+k))//2 for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Mar 13 2024
CROSSREFS
Cf. A093005 (row sums).
Sequence in context: A195673 A339674 A241070 * A132385 A358840 A191716
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Mar 14 2007
EXTENSIONS
More terms added by G. C. Greubel, Mar 13 2024
STATUS
approved