login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128618
Triangle read by rows: A128174 * A127647 as infinite lower triangular matrices.
2
1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 2, 0, 5, 0, 1, 0, 3, 0, 8, 1, 0, 2, 0, 5, 0, 13, 0, 1, 0, 3, 0, 8, 0, 21, 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 1, 0, 3, 0, 8, 0, 21, 0, 55, 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 89, 0, 1, 0, 3, 0, 8, 0, 21, 0, 55, 0, 144, 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 89, 0, 233
OFFSET
1,6
COMMENTS
This triangle is different from A128619, which is A128619 = A127647 * A128174.
FORMULA
By columns, Fibonacci(k) interspersed with alternate zeros in every column, k=1,2,3,...
Sum_{k=1..n} T(n, k) = A052952(n-1) (row sums).
From G. C. Greubel, Mar 17 2024: (Start)
T(n, k) = (1/2)*(1 + (-1)^(n+k))*Fibonacci(k).
T(n, n) = A000045(n).
T(2*n-1, n) = (1/2)*(1-(-1)^n)*A000045(n).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A052952(n-1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1 - (-1)^n)*(Fibonacci((n+ 5)/2) - 1).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1-(-1)^n) * A355020(floor((n-1)/2)). (End)
EXAMPLE
First few rows of the triangle are:
1;
0, 1;
1, 0, 2;
0, 1, 0, 3;
1, 0, 2, 0, 5;
0, 1, 0, 3, 0, 8;
1, 0, 2, 0, 5, 0, 13;
0, 1, 0, 3, 0, 8, 0, 21;
1, 0, 2, 0, 5, 0, 13, 0, 34;
0, 1, 0, 3, 0, 8, 0, 21, 0, 55;
1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 89;
...
MATHEMATICA
Table[Fibonacci[k]*Mod[n-k+1, 2], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Mar 17 2024 *)
PROG
(Magma) [((n+k+1) mod 2)*Fibonacci(k): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 17 2024
(SageMath) flatten([[((n-k+1)%2)*fibonacci(k) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Mar 17 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Mar 14 2007
EXTENSIONS
a(6) corrected and more terms from Georg Fischer, May 30 2023
STATUS
approved