login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128615
Expansion of x/(1 + x + x^2 - x^3 - x^4 - x^5).
1
0, 1, -1, 0, 2, -2, 0, 3, -3, 0, 4, -4, 0, 5, -5, 0, 6, -6, 0, 7, -7, 0, 8, -8, 0, 9, -9, 0, 10, -10, 0, 11, -11, 0, 12, -12, 0, 13, -13, 0, 14, -14, 0, 15, -15, 0, 16, -16, 0, 17, -17, 0, 18, -18, 0, 19, -19
OFFSET
0,5
COMMENTS
Partial sums are 0,1,0,0,2,0,0,3,0,0,4,...
FORMULA
G.f.: x/((1-x)*(1+x+x^2)^2) = x*(1-x)/(1-x^3)^2.
a(n) = (1/9)*(1 - cos(2*Pi*n/3) + sqrt(3)*(2*n + 3)*sin(2*Pi*n/3)).
a(n) = floor((n+3)/3)*A049347(n+2). - G. C. Greubel, Mar 26 2024
MATHEMATICA
CoefficientList[Series[x/(1+x+x^2-x^3-x^4-x^5), {x, 0, 60}], x] (* or *) LinearRecurrence[{-1, -1, 1, 1, 1}, {0, 1, -1, 0, 2}, 60] (* or *) Table[{0, n, -n}, {n, 20}]//Flatten (* Harvey P. Dale, Jul 15 2017 *)
Table[Floor[(n+3)/3]*(Mod[n+1, 3] -1), {n, 0, 40}] (* G. C. Greubel, Mar 26 2024 *)
PROG
(Magma) [Floor((n+3)/3)*((n+1) mod 3 -1): n in [0..40]]; // G. C. Greubel, Mar 26 2024
(SageMath) [((n+3)//3)*((n+1)%3 -1) for n in range(41)] # G. C. Greubel, Mar 26 2024
CROSSREFS
Sequence in context: A341445 A360048 A127899 * A087508 A095731 A048142
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 13 2007
STATUS
approved