login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127899
Transform related to the harmonic series.
12
1, -2, 2, 0, -3, 3, 0, 0, -4, 4, 0, 0, 0, -5, 5, 0, 0, 0, 0, -6, 6, 0, 0, 0, 0, 0, -7, 7, 0, 0, 0, 0, 0, 0, -8, 8, 0, 0, 0, 0, 0, 0, 0, -9, 9, 0, 0, 0, 0, 0, 0, 0, 0, -10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, 12
OFFSET
1,2
COMMENTS
This transform is the inverse of a triangle in which each row has n terms of the harmonic series; i.e., the inverse of: 1; 1, 1/2; 1, 1/2, 1/3; ...
Eigensequence of the unsigned triangle = A002467 starting (1, 4, 15, 76, 455, ...). - Gary W. Adamson, Dec 29 2008
Table T(n,k) read by antidiagonals. T(1,1)=1, T(n,1) = n (for n>1), T(n,2) = -n, T(n,k) = 0, k > 2. - Boris Putievskiy, Jan 17 2013
LINKS
Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
FORMULA
Triangle, a(1) = 1; by rows, (n-2) zeros followed by -n, n.
From Boris Putievskiy, Jan 17 2013: (Start)
a(n) = floor((A002260(n)+2)/(A003056(n)+2))*(A003056(n)+1)*(-1)^(A002260(n)+A003056(n)+1), n>0.
a(n) = floor((i+2)/(t+2))*(t+1)*(-1)^(i+t+1), where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). (End)
a(n) = floor(-1/2*A002024(n)^2 + A002024(n+1)^2-1/2*A002024(n+1) + 1/2*A002024(n+2) - 1/2*A002024(n+2)^2). - Brian Tenneson, Feb 10 2017
EXAMPLE
First few rows of the triangle are:
1;
-2, 2;
0, -3, 3;
0, 0, -4, 4;
0, 0, 0, -5, 5;
0, 0, 0, 0, -6, 6;
0, 0, 0, 0, 0, -7, 7;
...
From Boris Putievskiy, Jan 17 2013: (Start)
The start of the sequence as table:
1..-1..0..0..0..0..0...
1..-2..0..0..0..0..0...
2..-3..0..0..0..0..0...
3..-4..0..0..0..0..0...
4..-5..0..0..0..0..0...
5..-6..0..0..0..0..0...
6..-7..0..0..0..0..0...
...
The start of the sequence as triangle array read by rows:
1;
-1,1;
0,-2,2;
0,0,-3,3;
0,0,0,-4,4;
0,0,0,0,-5,5;
0,0,0,0,0,-6,6;
0,0,0,0,0,0,-7,7;
...
Row number r (r>4) contains (r-2) times '0', then '-r' and 'r'. (End)
MAPLE
A127899 := proc(n, k)
if k = n then
n;
elif k = n-1 then
-n;
else
0;
end if;
end proc:
seq(seq( A127899(n, k), k=1..n), n=1..13) ; # R. J. Mathar, Jul 19 2024
MATHEMATICA
Table[Module[{t = Floor[(-1 + Sqrt[8 n - 7])/2], i}, i = n - t (t + 1)/2; Floor[(i + 2)/(t + 2)] (t + 1) (-1)^(i + t + 1)], {n, 78}] (* or *)
Table[If[n == 1, {n}, ConstantArray[0, n - 2]~Join~{-n, n}], {n, 12}] // Flatten (* Michael De Vlieger, Feb 11 2017 *)
PROG
(Haskell)
a127899 n k = a127899_tabl !! (n-1) !! (k-1)
a127899_row n = a127899_tabl !! (n-1)
a127899_tabl = map reverse ([1] : xss) where
xss = iterate (\(u : v : ws) -> u + 1 : v - 1 : ws ++ [0]) [2, -2]
-- Reinhard Zumkeller, Nov 14 2014
CROSSREFS
Cf. A002467.
Sequence in context: A271707 A341445 A360048 * A128615 A087508 A095731
KEYWORD
tabl,sign,easy
AUTHOR
Gary W. Adamson, Feb 04 2007
STATUS
approved