login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127896
Expansion of 1/(1 + 2*x + 3*x^2 + x^3).
7
1, -2, 1, 3, -7, 4, 10, -25, 16, 33, -89, 63, 108, -316, 245, 350, -1119, 943, 1121, -3952, 3598, 3539, -13920, 13625, 10971, -48897, 51256, 33208, -171287, 191694, 97265, -598325, 713161, 271388, -2083934
OFFSET
0,2
COMMENTS
Row sums of A127895. Series reversion is A127897.
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n+2k+2,n-k).
a(n) = -2*a(n-1) -3*a(n-2) -a(n-3), n>=3. - Vincenzo Librandi, Mar 22 2011
MATHEMATICA
CoefficientList[Series[1/(1+2x+3x^2+x^3), {x, 0, 40}], x] (* Harvey P. Dale, Apr 19 2011 *)
LinearRecurrence[{-2, -3, -1}, {1, -2, 1}, 30] (* G. C. Greubel, Apr 29 2018 *)
PROG
(PARI) x='x+O('x^50); Vec(1/(1+2*x+3*x^2+x^3)) \\ G. C. Greubel, Apr 29 2018
(Magma) I:=[1, -2, 1]; [n le 3 select I[n] else -2*Self(n-1) -3*Self(n-2) -Self(n-3): n in [1..50]]; // G. C. Greubel, Apr 29 2018
CROSSREFS
Sequence in context: A360587 A058170 A238206 * A010757 A323943 A286616
KEYWORD
easy,sign
AUTHOR
Paul Barry, Feb 04 2007
STATUS
approved