OFFSET
0,2
COMMENTS
The matrix inverse of the convolution triangle of A001764 (number of ternary trees). - Peter Luschny, Oct 09 2022
LINKS
G. C. Greubel, Rows n=0..100 of triangle, flattened
FORMULA
EXAMPLE
Triangle begins
1;
-3, 1;
6, -6, 1;
-10, 21, -9, 1;
15, -56, 45, -12, 1;
-21, 126, -165, 78, -15, 1;
28, -252, 495, -364, 120, -18, 1;
-36, 462, -1287, 1365, -680, 171, -21, 1;
45, -792, 3003, -4368, 3060, -1140, 231, -24, 1;
-55, 1287, -6435, 12376, -11628, 5985, -1771, 300, -27, 1;
66, -2002, 12870, -31824, 38760, -26334, 10626, -2600, 378, -30, 1;
MAPLE
# Uses function InvPMatrix from A357585. Adds column 1, 0, 0, ... to the left.
InvPMatrix(10, n -> binomial(3*n, n)/(2*n+1)); # Peter Luschny, Oct 09 2022
MATHEMATICA
Table[(-1)^(n-k)*Binomial[n+2*k+2, n-k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 29 2018 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1((-1)^(n-k)*binomial(n+2*k+2, n-k), ", "))) \\ G. C. Greubel, Apr 29 2018
(Magma) [(-1)^(n-k)*Binomial(n+2*k+2, n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Apr 29 2018
(Sage) flatten([[(-1)^(n-k)*binomial(n+2*k+2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Feb 04 2007
EXTENSIONS
Terms a(50) onward added by G. C. Greubel, Apr 29 2018
STATUS
approved