login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323943
Trapezoidal matrix T(n,k) (n>=1, 1<=k<=n+2) read by rows, arising in enumeration of unbranched k-4-catafusenes.
1
1, 2, 1, 3, 7, 5, 1, 9, 24, 22, 8, 1, 27, 81, 90, 46, 11, 1, 81, 270, 351, 228, 79, 14, 1, 243, 891, 1323, 1035, 465, 121, 17, 1, 729, 2916, 4860, 4428, 2430, 828, 172, 20, 1, 2187, 9477, 17496, 18144, 11718, 4914, 1344, 232, 23, 1, 6561, 30618, 61965, 71928, 53298, 26460, 8946, 2040, 301, 26, 1, 19683
OFFSET
1,2
COMMENTS
Rows sums are powers of 4.
LINKS
S. J. Cyvin, B. N. Cyvin and J. Brunvoll, Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons, Journal of molecular structure 376.1-3 (1996): 495-505. See Section 7.3.
FORMULA
T(1,1)=T(1,3)=1, T(1,2)=2; thereafter T(n+1,k) = 3*T(n,k)+T(n,k-1).
EXAMPLE
Matrix begins:
1, 2, 1,
3, 7, 5, 1,
9, 24, 22, 8, 1,
27, 81, 90, 46, 11, 1,
81, 270, 351, 228, 79, 14, 1,
...
MAPLE
A323943 := proc(n, k)
option remember;
if n = 1 then
if k>=1 and k<=3 then
op(k, [1, 2, 1]) ;
else
0;
end if;
else
3*procname(n-1, k)+procname(n-1, k-1) ;
end if;
end proc:
seq(seq(A323943(n, k), k=1..n+2), n=1..12) ; # R. J. Mathar, May 08 2019
MATHEMATICA
T[n_, k_] := T[n, k] = If[n == 1, If[k >= 1 && k <= 3, {1, 2, 1}[[k]], 0], 3*T[n - 1, k] + T[n - 1, k - 1]];
Table[Table[T[n, k], {k, 1, n + 2}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Nov 08 2023, after R. J. Mathar *)
CROSSREFS
Cf. A024462 (reversed rows).
Cf. A000244 (column 1), A038765 (column 2), A081892 (column 3)
Sequence in context: A238206 A127896 A010757 * A286616 A019320 A201615
KEYWORD
nonn,tabf,easy
AUTHOR
N. J. A. Sloane, Feb 09 2019
STATUS
approved