login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081892
Second binomial transform of C(n+2,2).
4
1, 5, 22, 90, 351, 1323, 4860, 17496, 61965, 216513, 747954, 2558790, 8680203, 29229255, 97785144, 325241892, 1076168025, 3544180029, 11622614670, 37967207922, 123587135991, 400980206115, 1297083797172, 4184141281200
OFFSET
0,2
COMMENTS
Binomial transform of A049611(n+1).
2nd binomial transform of C(n+2,2), A000217.
3rd binomial transform of (1,2,1,0,0,0,.....)
FORMULA
a(n) = 3^(n - 2)*(n + 2)*(n + 9)/2 = 3^n*(n^2 + 11*n + 18)/18.
G.f.: (1 - 2*x)^2/(1 - 3*x)^3.
E.g.f.: (2 + 4*x + x^2)*exp(3*x)/2. - G. C. Greubel, Oct 18 2018
MATHEMATICA
LinearRecurrence[{9, -27, 27}, {1, 5, 22}, 50] (* G. C. Greubel, Oct 18 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1-2*x)^2/(1-3*x)^3) \\ G. C. Greubel, Oct 18 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x)^2/(1-3*x)^3)); // G. C. Greubel, Oct 18 2018
CROSSREFS
Cf. A081893.
A right-edge column of triangle A024462.
Sequence in context: A086090 A037529 A108072 * A128566 A097138 A105467
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 30 2003
STATUS
approved