Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 08 2022 08:45:09
%S 1,5,22,90,351,1323,4860,17496,61965,216513,747954,2558790,8680203,
%T 29229255,97785144,325241892,1076168025,3544180029,11622614670,
%U 37967207922,123587135991,400980206115,1297083797172,4184141281200
%N Second binomial transform of C(n+2,2).
%C Binomial transform of A049611(n+1).
%C 2nd binomial transform of C(n+2,2), A000217.
%C 3rd binomial transform of (1,2,1,0,0,0,.....)
%H G. C. Greubel, <a href="/A081892/b081892.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (9,-27,27).
%F a(n) = 3^(n - 2)*(n + 2)*(n + 9)/2 = 3^n*(n^2 + 11*n + 18)/18.
%F G.f.: (1 - 2*x)^2/(1 - 3*x)^3.
%F E.g.f.: (2 + 4*x + x^2)*exp(3*x)/2. - _G. C. Greubel_, Oct 18 2018
%t LinearRecurrence[{9, -27, 27}, {1, 5, 22}, 50] (* _G. C. Greubel_, Oct 18 2018 *)
%o (PARI) x='x+O('x^30); Vec((1-2*x)^2/(1-3*x)^3) \\ _G. C. Greubel_, Oct 18 2018
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x)^2/(1-3*x)^3)); // _G. C. Greubel_, Oct 18 2018
%Y Cf. A081893.
%Y A right-edge column of triangle A024462.
%K nonn,easy
%O 0,2
%A _Paul Barry_, Mar 30 2003