login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081890
a(n) = 9^n - 8^n - 7^n - 6^n + 3*5^n.
1
1, 3, 7, 33, 643, 11073, 151867, 1816713, 19996963, 208630833, 2099398027, 20597485593, 198424412083, 1885822419393, 17740469253787, 165580566245673, 1535948935336003, 14178113530908753, 130361707324735147, 1194785495130736953, 10921581632007328723, 99616564791408530913
OFFSET
0,2
COMMENTS
Binomial transform of A081687.
FORMULA
G.f.: -(4182*x^4-2082*x^3+387*x^2-32*x+1)/((5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)). [Colin Barker, Aug 12 2012]
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(5*x)*(exp(4*x) - exp(3*x) - exp(2*x) - exp(x) + 3).
a(n) = 35*a(n-1) - 485*a(n-2) + 3325*a(n-3) - 11274*a(n-4) + 15120*a(n-5) for n > 4. (End)
MATHEMATICA
LinearRecurrence[{35, -485, 3325, -11274, 15120}, {1, 3, 7, 33, 643}, 30] (* Harvey P. Dale, Jun 26 2017 *)
CROSSREFS
Sequence in context: A208989 A358961 A024496 * A192880 A355156 A365140
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 30 2003
EXTENSIONS
a(19)-a(21) from Elmo R. Oliveira, Sep 12 2024
STATUS
approved