login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019320
Cyclotomic polynomials at x=2.
38
2, 1, 3, 7, 5, 31, 3, 127, 17, 73, 11, 2047, 13, 8191, 43, 151, 257, 131071, 57, 524287, 205, 2359, 683, 8388607, 241, 1082401, 2731, 262657, 3277, 536870911, 331, 2147483647, 65537, 599479, 43691, 8727391, 4033, 137438953471, 174763, 9588151, 61681
OFFSET
0,1
FORMULA
(lcm_{k=1..n} (2^k - 1))/lcm_{k=1..n-1} (2^k - 1), n > 1. - Vladeta Jovovic, Jan 20 2002
Let b(1) = 1 and b(n+1) = lcm(b(n), 2^n-1) then Phi(n,2) = b(n+1)/b(n) = a(n). - Thomas Ordowski, May 08 2013
a(0) = 2; for n > 0, a(n) = (2^n-1)/gcd(a(0)*a(1)*...*a(n-1), 2^n-1). - Thomas Ordowski, May 11 2013
MAPLE
with(numtheory, cyclotomic); f := n->subs(x=2, cyclotomic(n, x)); seq(f(i), i=0..64);
MATHEMATICA
Join[{2}, Table[Cyclotomic[n, 2], {n, 1, 40}]] (* Jean-François Alcover, Jun 14 2013 *)
PROG
(PARI) vector(20, n, polcyclo(n, 2)) \\ Charles R Greathouse IV, May 18 2011
CROSSREFS
a(n) = A063696(n) - A063698(n) for up to n=104.
Same sequence in binary: A063672.
Sequence in context: A010757 A323943 A286616 * A201615 A033640 A112027
KEYWORD
nonn
AUTHOR
STATUS
approved