login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034268
a(n) = LCM_{k=1..n} (2^k - 1).
5
1, 3, 21, 105, 3255, 9765, 1240155, 21082635, 1539032355, 16929355905, 34654391537535, 450507089987955, 3690103574091339405, 158674453685927594415, 23959842506575066756665, 6157679524189792156462905, 807093212915080247739749421255
OFFSET
1,2
LINKS
Gert Almkvist, Powers of a matrix with coefficients in a Boolean ring, Proc. Amer. Math. Soc. 53 (1975), 27-31. See v_n.
J. B. Marshall, On the extension of Fermat's theorem to matrices of order n, Proceedings of the Edinburgh Mathematical Society 6 (1939) 85-91. See (10) page 90 for p=2.
FORMULA
a(n) = lcm(1, 3, 7, ..., 2^n - 1).
a(n) = Product_{k=1..n} Phi_k(2), where Phi_n(2) is n-th cyclotomic polynomial at x=2 (cf. A019320). - Vladeta Jovovic, Jan 20 2002
EXAMPLE
a(3) = lcm(1,3,7) = 21.
MAPLE
a:= proc(n) option remember; `if`(n=1, 1, ilcm(a(n-1), 2^n-1)) end:
seq(a(n), n=1..20); # Alois P. Heinz, Oct 16 2011
MATHEMATICA
Table[LCM @@ (2^Range[n] - 1), {n, 1, 20}] (* Jean-François Alcover, Apr 02 2015 *)
PROG
(PARI) A034268(n) = {local(r); r=1; for(k=1, n, r=lcm(r, 2^k-1)); r} \\ Michael B. Porter, Mar 02 2010
(PARI) a(n) = lcm(vector(n, k, 2^k-1)); \\ Michel Marcus, Jul 29 2022
(Magma) [Lcm([2^k-1:k in [1..n]]): n in [1..17]]; // Marius A. Burtea, Jan 29 2020
(Python)
from math import lcm
from itertools import accumulate
def aupto(n): return list(accumulate((2**k-1 for k in range(1, n+1)), lcm))
print(aupto(17)) # Michael S. Branicky, Jul 04 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Apr 20 2000
STATUS
approved