The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087508 Number of k such that mod(k*n,3) = 1 for 0 <= k <= n. 6
0, 1, 1, 0, 2, 2, 0, 3, 3, 0, 4, 4, 0, 5, 5, 0, 6, 6, 0, 7, 7, 0, 8, 8, 0, 9, 9, 0, 10, 10, 0, 11, 11, 0, 12, 12, 0, 13, 13, 0, 14, 14, 0, 15, 15, 0, 16, 16, 0, 17, 17, 0, 18, 18, 0, 19, 19, 0, 20, 20, 0, 21, 21, 0, 22, 22, 0, 23, 23, 0, 24, 24, 0, 25, 25, 0, 26, 26, 0, 27, 27, 0, 28, 28, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
FORMULA
a(n) = A000027(n) - A087509(n) - A087507(n).
a(n) = (2/3)*(floor(n/3)+1)*(1-cos(2*Pi*n/3)).
G.f.: x*(1 + x)/(1 - x^3)^2. - Arkadiusz Wesolowski, May 28 2013
a(n) = sin(n*Pi/3)*((4n+6)*sin(n*Pi/3)-sqrt(3)*cos(n*Pi))/9. - Wesley Ivan Hurt, Sep 24 2017
EXAMPLE
a(4) = 2 because k=1 and k=4 satisfy the equation.
MATHEMATICA
LinearRecurrence[{0, 0, 2, 0, 0, -1}, {0, 1, 1, 0, 2, 2}, 100] (* Vincenzo Librandi, Sep 22 2015 *)
Table[PadRight[{0}, 3, n], {n, 30}]//Flatten (* Harvey P. Dale, Jan 27 2021 *)
PROG
(PARI) concat(0, Vec((1+x)/(1-x^3)^2 +O(x^99))) \\ Charles R Greathouse IV, Oct 24 2014
(PARI) a(n) = sum(k=0, n, Mod(k*n, 3)==1); \\ Michel Marcus, Sep 27 2017
(Magma) I:=[0, 1, 1, 0, 2, 2]; [n le 6 select I[n] else 2*Self(n-3) - Self(n-6): n in [1..100]]; // Vincenzo Librandi, Sep 22 2015
(SageMath)
@CachedFunction
def A087508(n):
if (n<6): return (0, 1, 1, 0, 2, 2)[n]
else: return 2*A087508(n-3) - A087508(n-6)
[A087508(n) for n in (0..100)] # G. C. Greubel, Sep 02 2022
CROSSREFS
Sequence in context: A360048 A127899 A128615 * A095731 A048142 A071426
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 11 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 01:34 EDT 2024. Contains 372900 sequences. (Running on oeis4.)