login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087508
Number of k such that mod(k*n,3) = 1 for 0 <= k <= n.
6
0, 1, 1, 0, 2, 2, 0, 3, 3, 0, 4, 4, 0, 5, 5, 0, 6, 6, 0, 7, 7, 0, 8, 8, 0, 9, 9, 0, 10, 10, 0, 11, 11, 0, 12, 12, 0, 13, 13, 0, 14, 14, 0, 15, 15, 0, 16, 16, 0, 17, 17, 0, 18, 18, 0, 19, 19, 0, 20, 20, 0, 21, 21, 0, 22, 22, 0, 23, 23, 0, 24, 24, 0, 25, 25, 0, 26, 26, 0, 27, 27, 0, 28, 28, 0
OFFSET
0,5
FORMULA
a(n) = A000027(n) - A087509(n) - A087507(n).
a(n) = (2/3)*(floor(n/3)+1)*(1-cos(2*Pi*n/3)).
G.f.: x*(1 + x)/(1 - x^3)^2. - Arkadiusz Wesolowski, May 28 2013
a(n) = sin(n*Pi/3)*((4n+6)*sin(n*Pi/3)-sqrt(3)*cos(n*Pi))/9. - Wesley Ivan Hurt, Sep 24 2017
EXAMPLE
a(4) = 2 because k=1 and k=4 satisfy the equation.
MATHEMATICA
LinearRecurrence[{0, 0, 2, 0, 0, -1}, {0, 1, 1, 0, 2, 2}, 100] (* Vincenzo Librandi, Sep 22 2015 *)
Table[PadRight[{0}, 3, n], {n, 30}]//Flatten (* Harvey P. Dale, Jan 27 2021 *)
PROG
(PARI) concat(0, Vec((1+x)/(1-x^3)^2 +O(x^99))) \\ Charles R Greathouse IV, Oct 24 2014
(PARI) a(n) = sum(k=0, n, Mod(k*n, 3)==1); \\ Michel Marcus, Sep 27 2017
(Magma) I:=[0, 1, 1, 0, 2, 2]; [n le 6 select I[n] else 2*Self(n-3) - Self(n-6): n in [1..100]]; // Vincenzo Librandi, Sep 22 2015
(SageMath)
@CachedFunction
def A087508(n):
if (n<6): return (0, 1, 1, 0, 2, 2)[n]
else: return 2*A087508(n-3) - A087508(n-6)
[A087508(n) for n in (0..100)] # G. C. Greubel, Sep 02 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 11 2003
STATUS
approved