login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087511 Primes consisting only of digits 1 and 3 occurring with equal frequency. 16
13, 31, 11313331, 11333131, 13111333, 13131133, 13131331, 13133311, 13311313, 31133131, 33113131, 1113131333, 1131131333, 1131311333, 1131331133, 1133111333, 1133113133, 1133133311, 1133311313, 1133313113, 1133313131 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
There are 19 digit pairs which can produce such primes. (1, 0), (7, 0), (1, 3), (1, 4), (1, 6), (1, 7), (1, 9), (2, 3), (2, 9), (3, 4), (3, 5), (3, 7), (3, 8), (4, 7), (4, 9), (5, 9), (6, 7), (7, 9), (8, 9). - corrected by Robert Israel, Jul 10 2018
The number of digits is even and not divisible by 3. - Robert Israel, Jul 09 2018
LINKS
MAPLE
sort(select(isprime, [seq(seq((10^(2*d)-1)/9+2*add(10^i, i=s), s=combinat:-choose([$0..(2*d-1)], d)), d=[1, 2, 4, 5, 7, 8, 10])])); # Robert Israel, Jul 09 2018
MATHEMATICA
Union[FromDigits/@Select[Flatten[Table[Tuples[{1, 3}, k], {k, 10}], 1], PrimeQ[FromDigits[#]] && Count[#, 1]==Count[#, 3] &]] (* Jayanta Basu, May 19 2013 *)
PROG
(PARI) d1=1; d2=3; k=0; a=vector(100); for(n=1, 3000, B=binary(n); L=length(B); s=sum(j=1, length(B), B[j]); if(L%2==0 & s==L/2, C=vector(L, n, (d2-d1)*B[n]+d1); p=subst(Pol(C), x, 10); if(isprime(p), if(k<100, k++; a[k]=p)); D=vector(L, n, d2-(d2-d1)*B[n]); q=subst(Pol(D), x, 10); if(isprime(q ), if(k<100, k++; a[k]=q))); ); a=vector(k, n, a[n]); vecsort(a)
CROSSREFS
Sequence in context: A247836 A159670 A238736 * A299449 A300087 A118513
KEYWORD
base,nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 07:09 EDT 2024. Contains 371888 sequences. (Running on oeis4.)