login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Transform related to the harmonic series.
12

%I #32 Jul 19 2024 11:30:00

%S 1,-2,2,0,-3,3,0,0,-4,4,0,0,0,-5,5,0,0,0,0,-6,6,0,0,0,0,0,-7,7,0,0,0,

%T 0,0,0,-8,8,0,0,0,0,0,0,0,-9,9,0,0,0,0,0,0,0,0,-10,10,0,0,0,0,0,0,0,0,

%U 0,-11,11,0,0,0,0,0,0,0,0,0,0,-12,12

%N Transform related to the harmonic series.

%C This transform is the inverse of a triangle in which each row has n terms of the harmonic series; i.e., the inverse of: 1; 1, 1/2; 1, 1/2, 1/3; ...

%C Eigensequence of the unsigned triangle = A002467 starting (1, 4, 15, 76, 455, ...). - _Gary W. Adamson_, Dec 29 2008

%C Table T(n,k) read by antidiagonals. T(1,1)=1, T(n,1) = n (for n>1), T(n,2) = -n, T(n,k) = 0, k > 2. - _Boris Putievskiy_, Jan 17 2013

%H Reinhard Zumkeller, <a href="/A127899/b127899.txt">Rows n = 1..100 of triangle, flattened</a>

%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012.

%F Triangle, a(1) = 1; by rows, (n-2) zeros followed by -n, n.

%F From _Boris Putievskiy_, Jan 17 2013: (Start)

%F a(n) = floor((A002260(n)+2)/(A003056(n)+2))*(A003056(n)+1)*(-1)^(A002260(n)+A003056(n)+1), n>0.

%F a(n) = floor((i+2)/(t+2))*(t+1)*(-1)^(i+t+1), where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). (End)

%F a(n) = floor(-1/2*A002024(n)^2 + A002024(n+1)^2-1/2*A002024(n+1) + 1/2*A002024(n+2) - 1/2*A002024(n+2)^2). - _Brian Tenneson_, Feb 10 2017

%e First few rows of the triangle are:

%e 1;

%e -2, 2;

%e 0, -3, 3;

%e 0, 0, -4, 4;

%e 0, 0, 0, -5, 5;

%e 0, 0, 0, 0, -6, 6;

%e 0, 0, 0, 0, 0, -7, 7;

%e ...

%e From _Boris Putievskiy_, Jan 17 2013: (Start)

%e The start of the sequence as table:

%e 1..-1..0..0..0..0..0...

%e 1..-2..0..0..0..0..0...

%e 2..-3..0..0..0..0..0...

%e 3..-4..0..0..0..0..0...

%e 4..-5..0..0..0..0..0...

%e 5..-6..0..0..0..0..0...

%e 6..-7..0..0..0..0..0...

%e ...

%e The start of the sequence as triangle array read by rows:

%e 1;

%e -1,1;

%e 0,-2,2;

%e 0,0,-3,3;

%e 0,0,0,-4,4;

%e 0,0,0,0,-5,5;

%e 0,0,0,0,0,-6,6;

%e 0,0,0,0,0,0,-7,7;

%e ...

%e Row number r (r>4) contains (r-2) times '0', then '-r' and 'r'. (End)

%p A127899 := proc(n,k)

%p if k = n then

%p n;

%p elif k = n-1 then

%p -n;

%p else

%p 0;

%p end if;

%p end proc:

%p seq(seq( A127899(n,k),k=1..n),n=1..13) ; # _R. J. Mathar_, Jul 19 2024

%t Table[Module[{t = Floor[(-1 + Sqrt[8 n - 7])/2], i}, i = n - t (t + 1)/2; Floor[(i + 2)/(t + 2)] (t + 1) (-1)^(i + t + 1)], {n, 78}] (* or *)

%t Table[If[n == 1, {n}, ConstantArray[0, n - 2]~Join~{-n, n}], {n, 12}] // Flatten (* _Michael De Vlieger_, Feb 11 2017 *)

%o (Haskell)

%o a127899 n k = a127899_tabl !! (n-1) !! (k-1)

%o a127899_row n = a127899_tabl !! (n-1)

%o a127899_tabl = map reverse ([1] : xss) where

%o xss = iterate (\(u : v : ws) -> u + 1 : v - 1 : ws ++ [0]) [2, -2]

%o -- _Reinhard Zumkeller_, Nov 14 2014

%Y Cf. A002467.

%K tabl,sign,easy

%O 1,2

%A _Gary W. Adamson_, Feb 04 2007