Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 26 2024 04:09:43
%S 0,1,-1,0,2,-2,0,3,-3,0,4,-4,0,5,-5,0,6,-6,0,7,-7,0,8,-8,0,9,-9,0,10,
%T -10,0,11,-11,0,12,-12,0,13,-13,0,14,-14,0,15,-15,0,16,-16,0,17,-17,0,
%U 18,-18,0,19,-19
%N Expansion of x/(1 + x + x^2 - x^3 - x^4 - x^5).
%C Partial sums are 0,1,0,0,2,0,0,3,0,0,4,...
%H G. C. Greubel, <a href="/A128615/b128615.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,1,1,1).
%F G.f.: x/((1-x)*(1+x+x^2)^2) = x*(1-x)/(1-x^3)^2.
%F a(n) = (1/9)*(1 - cos(2*Pi*n/3) + sqrt(3)*(2*n + 3)*sin(2*Pi*n/3)).
%F a(n) = floor((n+3)/3)*A049347(n+2). - _G. C. Greubel_, Mar 26 2024
%t CoefficientList[Series[x/(1+x+x^2-x^3-x^4-x^5),{x,0,60}],x] (* or *) LinearRecurrence[{-1,-1,1,1,1},{0,1,-1,0,2},60] (* or *) Table[{0,n,-n},{n,20}]//Flatten (* _Harvey P. Dale_, Jul 15 2017 *)
%t Table[Floor[(n+3)/3]*(Mod[n+1,3] -1), {n,0,40}] (* _G. C. Greubel_, Mar 26 2024 *)
%o (Magma) [Floor((n+3)/3)*((n+1) mod 3 -1): n in [0..40]]; // _G. C. Greubel_, Mar 26 2024
%o (SageMath) [((n+3)//3)*((n+1)%3 -1) for n in range(41)] # _G. C. Greubel_, Mar 26 2024
%Y Cf. A049347, A087508.
%K easy,sign
%O 0,5
%A _Paul Barry_, Mar 13 2007