login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128613
Triangle T(n,k) read by rows: number of permutations in [n] with exactly k ascents that have an odd number of inversions.
2
0, 1, 0, 1, 2, 0, 0, 6, 6, 0, 0, 12, 36, 12, 0, 1, 29, 147, 155, 28, 0, 1, 64, 586, 1208, 605, 56, 0, 0, 120, 2160, 7800, 7800, 2160, 120, 0, 0, 240, 7320, 44160, 78000, 44160, 7320, 240, 0, 1, 517, 23893, 227569, 655315, 655039, 227623, 23947, 496, 0, 1, 1044, 76332, 1101420, 4869558, 7862124, 4868556, 1102068, 76305, 992, 0
OFFSET
1,5
LINKS
Jason Fulman, Gene B. Kim, Sangchul Lee, T. Kyle Petersen, On the joint distribution of descents and signs of permutations, arXiv:1910.04258 [math.CO], 2019.
S. Tanimoto, A new approach to signed Eulerian numbers, arXiv:math/0602263 [math.CO], 2006.
FORMULA
a(n) = 1/2 * [A008292(n,k) - A049061(n,k) ].
T(n,k) = 1/2 * [A008292(n,n-k)-A049061(n,n-k)], n>=1, 0<=k<n. - R. J. Mathar, Nov 01 2007
EXAMPLE
Triangle starts:
0;
1,0;
1,2,0;
0,6,6,0;
0,12,36,12,0;
1,29,147,155,28,0;
1,64,586,120,605,56,0;
0,120,2160,7800,7800,2160,120,0;
MAPLE
A008292 := proc(n, k) local j; add( (-1)^j*(k-j)^n*binomial(n+1, j), j=0..k) ; end: A049061 := proc(n, k) if k <= 0 or n <=0 or k > n then 0; elif n = 1 then 1 ; elif n mod 2 = 0 then A049061(n-1, k)-A049061(n-1, k-1) ; else k*A049061(n-1, k)+(n-k+1)*A049061(n-1, k-1) ; fi ; end: A128613 := proc(n, k) (A008292(n, n-k)-A049061(n, n-k))/2 ; end: for n from 1 to 11 do for k from 0 to n-1 do printf("%d, ", A128613(n, k)) ; od: od: # R. J. Mathar, Nov 01 2007
# second Maple program:
b:= proc(u, o, i) option remember; expand(`if`(u+o=0, i,
add(b(u+j-1, o-j, irem(i+u+j-1, 2)), j=1..o)*x+
add(b(u-j, o+j-1, irem(i+u-j, 2)), j=1..u)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n, 0$2)):
seq(T(n), n=1..14); # Alois P. Heinz, May 02 2017
MATHEMATICA
b[u_, o_, i_] := b[u, o, i] = Expand[If[u + o == 0, i, Sum[b[u + j - 1, o - j, Mod[i + u + j - 1, 2]], {j, 1, o}]*x + Sum[b[u - j, o + j - 1, Mod[i + u - j, 2]], {j, 1, u}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n-1}]][b[n, 0, 0]];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jul 25 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, May 08 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Nov 01 2007
STATUS
approved