OFFSET
1,5
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
Jason Fulman, Gene B. Kim, Sangchul Lee, T. Kyle Petersen, On the joint distribution of descents and signs of permutations, arXiv:1910.04258 [math.CO], 2019.
S. Tanimoto, A new approach to signed Eulerian numbers, arXiv:math/0602263 [math.CO], 2006.
FORMULA
EXAMPLE
Triangle starts:
0;
1,0;
1,2,0;
0,6,6,0;
0,12,36,12,0;
1,29,147,155,28,0;
1,64,586,120,605,56,0;
0,120,2160,7800,7800,2160,120,0;
MAPLE
A008292 := proc(n, k) local j; add( (-1)^j*(k-j)^n*binomial(n+1, j), j=0..k) ; end: A049061 := proc(n, k) if k <= 0 or n <=0 or k > n then 0; elif n = 1 then 1 ; elif n mod 2 = 0 then A049061(n-1, k)-A049061(n-1, k-1) ; else k*A049061(n-1, k)+(n-k+1)*A049061(n-1, k-1) ; fi ; end: A128613 := proc(n, k) (A008292(n, n-k)-A049061(n, n-k))/2 ; end: for n from 1 to 11 do for k from 0 to n-1 do printf("%d, ", A128613(n, k)) ; od: od: # R. J. Mathar, Nov 01 2007
# second Maple program:
b:= proc(u, o, i) option remember; expand(`if`(u+o=0, i,
add(b(u+j-1, o-j, irem(i+u+j-1, 2)), j=1..o)*x+
add(b(u-j, o+j-1, irem(i+u-j, 2)), j=1..u)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n, 0$2)):
seq(T(n), n=1..14); # Alois P. Heinz, May 02 2017
MATHEMATICA
b[u_, o_, i_] := b[u, o, i] = Expand[If[u + o == 0, i, Sum[b[u + j - 1, o - j, Mod[i + u + j - 1, 2]], {j, 1, o}]*x + Sum[b[u - j, o + j - 1, Mod[i + u - j, 2]], {j, 1, u}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n-1}]][b[n, 0, 0]];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jul 25 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, May 08 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Nov 01 2007
STATUS
approved