login
A128614
Number of labeled plane trees with n edges in which no vertex has outdegree one.
1
0, 6, 24, 360, 4320, 75600, 1451520, 33022080, 841881600, 24069830400, 759217536000, 26234438630400, 984940333977600, 39932452175616000, 1738621071323136000, 80909997706137600000, 4007834720796082176000
OFFSET
1,2
LINKS
W. Y. C. Chen, E. Y. P. Deng and L. L. M. Yang, Riordan paths and derangements, arXiv:math/0602298 [math.CO], 2006.
FORMULA
a(n) = n!*Sum_{k=1..n-1} binomial(n+1, k)*binomial(n-k-1, k-1).
a(n) = (n+1)!*A005043(n).
MATHEMATICA
a[n_] := (-1)^n (n+1)! Hypergeometric2F1[-n, 1/2, 2, 4]; Array[a, 17] (* Jean-François Alcover, Feb 17 2019 *)
PROG
(Magma)
A128614:= func< n | n eq 1 select 0 else Factorial(n)*(&+[Binomial(n+1, k)*Binomial(n-k-1, k-1): k in [1..n-1]]) >;
[A128614(n): n in [1..40]]; // G. C. Greubel, Mar 26 2024
(SageMath)
def A128614(n): return factorial(n)*sum(binomial(n+1, k)*binomial(n-k-1, k-1) for k in range(1, n))
[A128614(n) for n in range(1, 41)] # G. C. Greubel, Mar 26 2024
CROSSREFS
Cf. A005043.
Sequence in context: A010567 A097171 A152886 * A285018 A139240 A052524
KEYWORD
nonn
AUTHOR
Ralf Stephan, May 08 2007
STATUS
approved