login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152886
Number of descents beginning and ending with an even number in all permutations of {1,2,...,n}.
2
0, 0, 0, 6, 24, 360, 2160, 30240, 241920, 3628800, 36288000, 598752000, 7185024000, 130767436800, 1830744115200, 36614882304000, 585838116864000, 12804747411456000, 230485453406208000, 5474029518397440000, 109480590367948800000, 2810001819444019200000
OFFSET
1,4
FORMULA
a(2n) = (2n-1)!*binomial(n,2); a(2n+1) = (2n)!*binomial(n,2).
D-finite with recurrence +(-n+4)*a(n) +(n-1)*a(n-1) +(n-2)*(n-1)^2*a(n-2)=0. - R. J. Mathar, Jul 31 2022
Sum_{n>=4} 1/a(n) = 2*(CoshIntegral(1) - gamma - 3*e + 8) = 2*(A099284 - A001620 - 3 * A001113 + 8). - Amiram Eldar, Jan 22 2023
EXAMPLE
a(7) = 2160 because (i) the descent pairs can be chosen in binomial(3,2) = 3 ways, namely (4,2), (6,2), (6,4); (ii) they can be placed in 6 positions, namely (1,2),(2,3),(3,4),(4,5),(5,6),(6,7); (iii) the remaining 5 entries can be permuted in 5! = 120 ways; 3*6*120 = 2160.
MAPLE
a := proc (n) if `mod`(n, 2) = 0 then factorial(n-1)*binomial((1/2)*n, 2) else factorial(n-1)*binomial((1/2)*n-1/2, 2) end if end proc: seq(a(n), n = 1 .. 22);
MATHEMATICA
a[n_] := (n - 1)! * Binomial[If[OddQ[n], (n - 1)/2, n/2], 2]; Array[a, 25] (* Amiram Eldar, Jan 22 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jan 19 2009
STATUS
approved