

A152888


Partial sums of length of terms in A081368 where A081368(1) is set to 0.


1



0, 2, 5, 9, 14, 21, 28, 36, 45, 55, 66, 77, 90, 104, 119, 135, 152, 170
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Previous name was: The sequence of powers necessary to reconstruct Exp[0] from Thanh Diep's sequence A081368: E=Sum[A081368[n]/10^a(n),{n,1,Length}].


REFERENCES

C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 350351.


LINKS

Table of n, a(n) for n=1..18.


MATHEMATICA

a = {2, 71, 828, 1828, 45904, 5235360, 2874713, 52662497, 757247093, 6999595749, 66967627724, 76630353547, 5945713821785, 25166427427466, 391932003059921, 8174135966290435, 72900334295260595, 630738132328627943};
b = Table[Length[IntegerDigits[a[[n]]]], {n, 1, Length[a]}];
c = Table[Sum[b[[m]], {m, 1, n}]  1, {n, 1, Length[b]}] Sum[a[[n]]/10^(c[[n]]), {n, 1, Length[a]}];
N[%  E, 100]


PROG

(PARI) v=[71, 828, 1828, 45904, 5235360, 2874713, 52662497, 757247093, 6999595749, 66967627724, 76630353547, 5945713821785, 25166427427466, 391932003059921, 8174135966290435, 72900334295260595, 630738132328627943];
concat([0], vector(#v, n, sum(j=1, n, #digits(v[j])))) \\ Joerg Arndt, Aug 13 2013


CROSSREFS

Sequence in context: A006482 A191170 A191123 * A139423 A026053 A276031
Adjacent sequences: A152885 A152886 A152887 * A152889 A152890 A152891


KEYWORD

nonn,base,less


AUTHOR

Roger L. Bagula, Dec 14 2008


EXTENSIONS

Edited by Joerg Arndt and Michel Marcus, Aug 13 2013


STATUS

approved



