login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127648 * A128174 as an infinite lower triangular matrix.
3

%I #18 Mar 22 2024 17:42:45

%S 1,0,2,3,0,3,0,4,0,4,5,0,5,0,5,0,6,0,6,0,6,7,0,7,0,7,0,7,0,8,0,8,0,8,

%T 0,8,9,0,9,0,9,0,9,0,9,0,10,0,10,0,10,0,10,0,10,11,0,11,0,11,0,11,0,

%U 11,0,11,0,12,0,12,0,12,0,12,0,12,0,12,13,0,13,0,13,0,13,0,13,0,13,0,13

%N A127648 * A128174 as an infinite lower triangular matrix.

%H G. C. Greubel, <a href="/A128621/b128621.txt">Rows n = 1..100 of the triangle, flattened</a>

%F Odd rows: n terms of n, 0, n, ...; even rows, n terms of 0, n, 0, ...

%F T(n,k) = n if n+k even, T(n,k) = 0 if n+k odd.

%F Sum_{k=1..n} T(n, k) = A093005(n) (row sums).

%F From _G. C. Greubel_, Mar 13 2024: (Start)

%F T(n, k) = n*(1 + (-1)^(n+k))/2.

%F Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n+1)*A093005(n).

%F Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1-(-1)^n) * A000326(floor((n+1)/2)).

%F Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1 - (-1)^n)*A123684(floor((n+1)/2)). (End)

%e First few rows of the triangle:

%e 1;

%e 0, 2;

%e 3, 0, 3;

%e 0, 4, 0, 4;

%e 5, 0, 5, 0, 5;

%e ...

%t Table[n*(1+(-1)^(n+k))/2, {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 13 2024 *)

%o (Magma) [n*(1+(-1)^(n+k))/2: k in [1..n], n in [1..15]]; // _G. C. Greubel_, Mar 13 2024

%o (SageMath) flatten([[n*(1+(-1)^(n+k))//2 for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Mar 13 2024

%Y Cf. A000326, A123684, A127648, A128174.

%Y Cf. A093005 (row sums).

%K nonn,easy,tabl

%O 1,3

%A _Gary W. Adamson_, Mar 14 2007

%E More terms added by _G. C. Greubel_, Mar 13 2024