login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008613 Molien series for 3-dimensional representation of A_5. 1
1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 1, 5, 1, 6, 1, 7, 2, 8, 2, 9, 3, 10, 4, 11, 4, 13, 5, 14, 6, 15, 7, 17, 8, 18, 9, 20, 10, 22, 11, 23, 13, 25, 14, 27, 15, 29, 17, 31, 18, 33, 20, 35, 22, 37, 23, 40, 25, 42, 27 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Also arises in connection with Lee weight enumerators of codes over GF(5).

Partitions of n into (any number of) parts 2, 6, and 10, and at most one part 15. - Joerg Arndt, May 15 2011

The Neusel and Smith reference on Example 4 (T. Molien) on the rotation group of an icosahedron is a representation of A_5. - Michael Somos, Feb 01 2018

REFERENCES

D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 101.

H. Derksen and G. Kemper, Computational Invariant Theory, Springer, 2002; p. 92.

G. van der Geer, Hilbert Modular Surfaces, Springer-Verlag, 1988; p. 192.

F. Klein, Lectures on the Icosahedron ..., 2nd Rev. Ed., 1913; reprinted by Dover, NY, 1956; see pp. 236-243.

F. Klein, Werke, II, p. 354.

M. D. Neusel and L. Smith, Invariant Theory of Finite Groups, AMS, 2010, p. 55.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

Roberto De Maria Nunes Mendes, Symmetries of spherical harmonics, Transactions of the American Mathematical Society 204 (1975): 161-178. See subgroup 109.

J. S. Leon, V. S. Pless and N. J. A. Sloane, Self-dual codes over GF(5), J. Combin. Theory, A 32 (1982), 178-194.

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

F. J. MacWilliams, C. L. Mallows and N. J. A. Sloane, Generalizations of Gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, 18 (1972), 794-805; see p. 802, col. 2, foot.

Index entries for Molien series

Index entries for linear recurrences with constant coefficients, signature (-1,1,2,1,0,0,-1,-2,-1,1,1)

FORMULA

G.f.: (1+x^15)/((1-x^2)*(1-x^6)*(1-x^10)) = ( -1-x+x^3+x^5+x^4-x^8-x^7 ) / ( (1+x+x^2) *(x^4+x^3+x^2+x+1) *(1+x)^2 *(x-1)^3 ).

a(n) = -a(n-1)+a(n-2)+2*a(n-3)+a(n-4)-a(n-7)-2*a(n-8)-a(n-9)+a(n-10)+a (n-11), n>10. - Harvey P. Dale, May 15 2011

a(n) ~ 1/120*n^2. - Ralf Stephan, Apr 29 2014

a(n) = floor((n^2+3*n+105)/120+(n+1)*(-1)^n/8). - Tani Akinari, Sep 30 2014

Euler transform of length 30 sequence [0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]. - Michael Somos, Sep 30 2014

a(n) = a(-3-n) for all n in Z.

0 = a(n) - a(n+2) - a(n+6) + a(n+8) - [mod(n, 5) == 2] for all n in Z. - Michael Somos, Sep 30 2014

EXAMPLE

G.f. = 1 + x^2 + x^4 + 2*x^6 + 2*x^8 + 3*x^10 + 4*x^12 + 4*x^14 + x^15 + ...

MAPLE

(1+x^15)/((1-x^2)*(1-x^6)*(1-x^10));

MATHEMATICA

CoefficientList[Series[(1+x^15)/((1-x^2)(1-x^6)(1-x^10)), {x, 0, 100}], x] (* or *) LinearRecurrence[{-1, 1, 2, 1, 0, 0, -1, -2, -1, 1, 1}, {1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3}, 100] (* Harvey P. Dale, May 15 2011 *)

a[ n_] := Module[{m = If[ n < 0, -3 - n, n]}, m = If[ OddQ[m], m - 15, m]/2; SeriesCoefficient[ 1 / ((1 - x^1) (1 - x^3) (1 - x^5)), {x, 0, m}]]; (* Michael Somos, Feb 01 2018 *)

LinearRecurrence[{-1, 1, 2, 1, 0, 0, -1, -2, -1, 1, 1}, {1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3}, 80] (* Harvey P. Dale, Jul 09 2019 *)

PROG

(PARI) a(n)=(n^2 + 3*n + 105 + 15*(n+1)*(-1)^n)\120 \\ Charles R Greathouse IV, Feb 10 2017

CROSSREFS

Sequence in context: A025805 A029192 A128619 * A165685 A035457 A005868

Adjacent sequences:  A008610 A008611 A008612 * A008614 A008615 A008616

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 22:29 EST 2019. Contains 329850 sequences. (Running on oeis4.)