login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008614 Molien series of 3-dimensional representation of group GL(3,2) (= L(2,7)); a simple group of order 168. 3
1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 3, 0, 3, 1, 3, 0, 4, 1, 4, 1, 5, 1, 5, 1, 6, 2, 6, 2, 7, 2, 7, 3, 8, 3, 9, 3, 9, 4, 10, 4, 11, 5, 11, 5, 12, 6, 13, 6, 14, 7, 14, 7, 16, 8, 16, 9, 17, 9, 18, 10, 19, 11, 20, 11, 21, 12, 22, 13, 23, 14, 24, 14, 25, 16, 26, 16, 28, 17, 28, 18, 30 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

The simple group of order 168 expressed as a group of linear substitutions on three variables has invariants of degrees 4, 6, 14 which are rationally independent. The invariant of degree 4 is x1*x2^3 + x2*x3^3 + x3*x1^3 (Klein's quartic curve). - Michael Somos, Mar 18 2015

REFERENCES

D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 101.

W. Burnside, Theory of Groups of Finite Order, Dover Publications, NY, 1955, section 267, page 363. There is a typo in his formula: the term with numerator 21 should have denominator (1+x)(1-x^2). [Added by N. J. A. Sloane, Mar 01 2012]

T. A. Springer, Invariant Theory, Lecture Notes in Math., Vol. 585, Springer, p. 97.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

Index entries for Molien series

Index entries for linear recurrences with constant coefficients, signature (-1,0,1,2,1,0,0,0,0,-1,-2,-1,0,1,1).

FORMULA

Euler transform of length 42 sequence [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]. - Michael Somos, Oct 11 2006

G.f.: (1 - x^42) / ((1 - x^4) * (1 - x^6) * (1 - x^14) * (1 - x^21)). - Michael Somos, Oct 11 2006

a(n) = a(-3 - n). a(n) = a(n-4) + a(n-6) - a(n-10) + a(n-14) - a(n-18) - a(n-20) + a(n-24) for all n in Z. - Michael Somos, Oct 11 2006

a(2*n + 21) = a(2*n) = A008671(n) for all n in Z.

a(n) ~ 1/336*n^2. - Ralf Stephan, Apr 29 2014

a(n)= -a(n-1) +a(n-3) +2*a(n-4) +a(n-5) -a(n-10) -2*a(n-11) -a(n-12) +a(n-14) +a(n-15). - R. J. Mathar, Dec 18 2014

G.f.: (1/168) * ( 1 / (1 - x)^3 + 21 / ((1 + x) * (1 - x^2)) + 56 / (1 - x^3) + 42 / ((1 - x) * (1 + x^2)) + 24 * (1 - x) * (2 + 3*x + 2*x^2) / (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). [Burnside] - Michael Somos, Mar 18 2015

EXAMPLE

G.f. = 1 + x^4 + x^6 + x^8 + x^10 + 2*x^12 + 2*x^14 + 2*x^16 + 3*x^18 + ...

MAPLE

(1+x^21)/(1-x^4)/(1-x^6)/(1-x^14);

MATHEMATICA

LinearRecurrence[{-1, 0, 1, 2, 1, 0, 0, 0, 0, -1, -2, -1, 0, 1, 1}, {1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2}, 100] (* Harvey P. Dale, Jan 17 2015 *)

a[ n_] := Module[{m = If[ n < 0, -3 - n, n]}, m = If[ OddQ[m], m - 21, m] / 2; SeriesCoefficient[ 1 / ((1 - x^2) (1 - x^3) (1 - x^7)), {x, 0, m}]]; (* Michael Somos, Mar 18 2015 *)

PROG

(PARI) {a(n) = if( n%2, n-=21); n/=2; if( n<-11, n=-12-n); polcoeff( 1 / ((1-x^2) * (1-x^3) * (1-x^7)) + x * O(x^n), n)}; /* Michael Somos, Oct 11 2006 */

CROSSREFS

Cf. A008671.

Sequence in context: A281009 A284443 A260160 * A036663 A209457 A096577

Adjacent sequences:  A008611 A008612 A008613 * A008615 A008616 A008617

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 01:57 EST 2019. Contains 329948 sequences. (Running on oeis4.)